Забыли пароль?
Регистрация
О компании
Доставка
Каталог товаров  
Контакты
Задать вопрос
Как сделать заказ
Рекомендации
Партнёрам
Получить консультацию

рекомбинантные вакцины. Вакцина рекомбинантная


Вакцины рекомбинантные - Справочник химика 21

    Перечислите преимущества живой рекомбинантной вирусной вакцины перед неживой и субъединичной вакцинами. [c.246]

    Получение гормонов — не единственное поле приложения технологии рекомбинантных ДНК. Классические вакцины, защищающие от вирусных инфекций, часто выделяют из природных источников. Действие вакцин сводится к стимуляции продуцирования организмом антител в качестве ответной реакции на вирусы или их фрагменты. При этом организм приобретает способность сопротивляться данной вирусной инфекции. Конечно, введение при вакцинации активного вируса, вызывающего заболевание, сопряжено с определенным ри- [c.119]

    Каждая глава завершается подробным резюме и списком вопросов для повторения. Мы надеемся, что это поможет усвоить прочитанное. Все ключевые идеи иллюстрируются тщательно подобранными цветными рисунками (всего их более 200) мы убеждены, что один рисунок может сказать больше, нежели тысяча слов. Гл. 1 знакомит читателя с основами молекулярной биотехнологии и некоторыми коммерческими аспектами, а следующие пять глав (гл. 2-6) — с ее методологией. Все вместе эти главы подготовят читателя к восприятию материала всех последующих глав. В гл. 7-12 части II рассмотрены способы получения ценных метаболитов, вакцин, лекарственных веществ и продуктов, использующихся для диагностики, а также методы биодеградации удобрений и пестицидов. В гл. 13 описаны способы крупномасштабного культивирования генетически измененных микроорганизмов с целью получения коммерческих продуктов. Часть. III посвящена молекулярной биотехнологии растений и животных (гл. 14 и 15). Гл. 16 и 17 знакомят читателя с применением технологии рекомбинантных ДНК для идентификации генов человека, ответственных за развитие некоторых заболеваний, и подходами к генной терапии. В последней, IV части рассмотрены вопросы регламентации исследований в области молекулярной биотехнологии, оформления патентов на различные продукты и изобретения. [c.10]

    Разрешена к применению в Европе первая вакцина дтя животных, полученная по технологии рекомбинантных ДНК [c.18]

    К вакцинам для животных предъявляются менее жесткие требования, поэтому первыми вакцинами, полученными с помощью технологии рекомбинантных ДНК, были вакцины против ящура, бешенства, дизентерии и диареи поросят. Создаются и другие вакцины для животных, а в скором времени появятся и рекомбинантные вакцины, предназначенные для человека (табл. 11.1). [c.228]

    В некоторых случаях в качестве живых вакцин можно использовать генетически модифицированные (рекомбинантные) микроорганизмы (бактерии или вирусы). Такие вакцины содержат либо непатогенные микроорганизмы, синтезирующие антигенные детерминанты определенного патогенного агента, либо штаммы патогенных микроорганизмов, у которых модифицированы или делетированы гены вирулентности. В этих случаях основные антигенные детерминанты являются составными компонентами бактериальных или вирусных частиц и имеют такую же конформацию, какую они принимают в болезнетворном микроорганизме. Изолированный же антиген часто утрачивает исходную конформацию и вызывает лишь слабый иммунный ответ. [c.234]

    Современное руководство по биотехнологии, написанное авторитетными канадскими учеными. В книге подробно изложены основы генной инженерии механизмы репликации, транскрипции и трансляции методы клонирования, амплификации и секвенирования ДНК конструирование рекомбинантных ДНК введение последовательностей-мишеней в геном микроорганизмов, растений и животных, а также практическое применение генной инженерии для получения лекарственных веществ, вакцин, факторов роста, инсектицидов и т.д. Большое внимание уделено генной терапии и связанным с ней морально-этическим проблемам, патентованию биотехнологических продуктов и способов их получения. [c.4]

    В последнее десятилетие, с развитием технологии рекомбинантных ДНК, появилась возможность создать новое поколение вакцин, не обладающих недостатками традиционных вакцин. Для их разработки применяют методы генной инженерии. [c.228]

    Векторные ВКО-вакцины позволяют провести иммунизацию сразу от нескольких заболеваний. Для этого можно использовать рекомбинантный ВКО, который несет несколько генов, кодирующих разные антигены. [c.241]

    Что представляет собой вирус коровьей оспы и как с его помощью можно получать уникальные живые рекомбинантные вакцины  [c.246]

    В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапии наследственных и соматических болезней) широкое применение получили эндонуклеазы рестриктазы, катализирующие расщепление молекулы двухцепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4-7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (рекомбинантные ДНК), используемые далее для конструирования гибридных молекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вируса гепатита В, СПИДа и др.). [c.481]

    Предположим, что вы выделили РНК-со-держащий вирус, вызывающий бешенство у скунсов и енотов. Как на основе этого очищенного вируса создать рекомбинантную вакцину, защищающую животных от бешенства  [c.246]

    Часто некоторые клетки перевиваемых первичных клеточных культур претерпевают генетические изменения, в результате которых ускоряется их рост. Культуры клеток, которые при этом приобретают селективные преимущества, оказываются способными к неофаниченному росту in vitro и называются устойчивыми клеточными линиями. Одни клеточные линии сохраняют основные биохимические свойства исходных клеток, другие нет. У больщинства клеток, способных к неофаниченному росту, имеются значительные хромосомные изменения, в частности отмечается увеличение числа одних хромосом и потеря других. В молекулярной биотехнологии устойчивые клеточные линии иногда используют для размножения вирусов и для выявления белков, которые кодируются клонированными последовательностями ДНК. Кроме того, они применяются для крупномасиггабного производства вакцин и рекомбинантных белков. [c.28]

    Большое значение в связи с интенсификацией животноводства отводится профилактике инфекционных заболеваний сельскохозяйственных животных с применением рекомбинантных живых вакцин и генно-инже-нерных вакцин-антигенов, ранней диагностики этих заболеваний с помощью моноклональных антител и ДНК/РНК-проб. [c.251]

    Другой подход к созданию вакцин нового поколения строится на применении технологии рекомбинантной ДНК. Традиционно для защиты от вирусной инфекции используют либо аттенуированные (ослабленные), либо убитые вирусы. Аттенуация вирусных частиц достигается пассажем дикого (исходного) вируса человека через культуру клеток животных (например, обезьян). Снижение патогенности вируса происходит за счет множественных мутаций той части вирусного генома, которая ответственна за его вирулентность. Существует еще один прием, состоящий в прямом удалении рекомбинантной технологией части вирусной ДНК, ответственной за вирулентность, при сохранении всех прочих участков генома и в первую очередь тех, которые обеспечивают иммуногенность вируса. Вирусы с такой рекомбинированной ДНК могут использоваться в качестве вакцины. [c.340]

    Современные биотехнологические разработки предусматривают создание многочисленных вариантов вакцинных препаратов, наибольший интерес из которых представляют рекомбинантные вакцины и вакцн-ны-антигены. Вакцины обоих типов основаны на генно-инженерном подходе. Для получения рекомбинантных вакцин обычно используют хорошо известный вирус коровьей оспы (осповакцины). В его ДНК встраивают чужеродные гены, кодирующие иммуногенные белки различных возбудителей гемаглютинин вируса гриппа, гликопротеин О вируса 248 [c.248]

    Эти примеры можно продолжить. Следует отметить, что в настоящее время технология рекомбинантных ДНК позволяет получать более дешевые и безопасные вакцины для лечения опаснейших инфекционных заболеваний (гепатита, полиомиелита и др.). Во многих случаях получение подобных вакцин традиционными методами попросту невозможно. На основе генно-инженерных биотехнологий созданы более совершенные методы диагностики и лечения болезней [c.34]

    Экспрессия гибридных белков на поверхности бактериальных клеток. Еще одним интенсивно развивающимся направлением белковой инженерии, которое использует адресные домены и сигнальные последовательности, является экспонирование рекомбинантных белков на поверхности бактериальных клеток для создания бактериального дисплея, живых вакцин, а также иммобилизации самих клеток в процессе культивирования. Применение бактериального дисплея для направленной эволюции белков [c.379]

    Созданы и применяются в производстве высокочувствительные диагностические препараты на основе метода ИФА (иммуноферментного анализа), ДНК-зондов, внедрения полимеразной цепной реакции (ПЦР).Используются моноклональные антитела, полученные методом гибридомной технологии. Получены генетически трансформированные кролики с геном асРНК, устойчивые к вирусам лейкоза, а также трансгенные кролики с геном альфа-2 интерферона. Разработана рекомбинантная вакцина против лейкоза крупного рогатого скота на основе оспененного вектора. На культуре клеток нарабатывается антиген и производится диагностика лейкоза крупного рогатого скота. Генно-инженерные вакцины против ящура и сибирской язвы производятся в объемах, обеспечивающих потребности в них России, стран СНГ и ряда других государств мира. [c.428]

    Технология рекомбинантных ДНК, по всей вероятности, станет основой для разработки вакцин следующего поколения. [c.361]

    Быстрые темпы развития современной биологии обусловливаются запросами технологии, здравоохранения, сельского хозяйства, промышленности и, конечно же, любознательностью исследователей. Поскольку все мы и наши дети - продукты функциональных генетических систем, чисто академический интерес подогревается еще и личной заинтересованностью. Это сочетание научного интереса и личностного аспекта приводит к огромному общественному интересу к технологии рекомбинантных ДНК и ее детищу- генетической инженерии. Достижения биологии XX в. относятся к событиям исторического значения. Это была настоящая революция, которая пока приносила положительные плоды. Мы все глубже познаем самих себя и другие живые существа. Получены многие важные биологические продукты-гормоны, вакцины и ферменты, использующиеся как в исследовательских целях, так и в медицине и промышленности. Люди научились направленно изменять вредные микроорганизмы, превращая их в полезных агентов окружающей среды. Однако у этой революции есть и тревожные моменты. Необходимо помнить, что измененные в лучшую сторону микроорганизмы могут обладать другими, совсем не полезными свойствами. Чтобы исключить возможность использования генотерапии соматических клеток или изощренных диагностических методов с применением новых технологий не по назначению, необходимо тщательно проанализировать последствия. Ответственность здесь очень велика, поскольку эти последствия могут оказаться непредсказуемыми. [c.370]

    Специфическая Профилактические вакцины из опухолевых клеток, клеточные экстракты, очищенные или рекомбинантные антигены или идиотипы [c.387]

    Недостаток живой рекомбинантной вирусной вакцины состоит в том, что при вакцинации лиц со сниженным иммунным статусом (например, больных СПИДом) у них может развиться Т5гжелая вирусная инфекция. Чтобы решить эту проблему, можно встроить в вирусный вектор ген, кодирующий человеческий интерлейкин-2, который стимулирует Т-клеточный ответ и ограничивает пролиферацию вируса. [c.241]

    Как правило, вакцины содержат неповрежденные патогенные микроорганизмы, но при этом неживые или аттенуированные. Антитела, вырабатываемые в ответ на их введение, связываются с поверхностными белками патогенного организма и запускают иммунный ответ. В связи с этим возникает вопрос должна ли вакцина содержать целые клетки или лишь какие-то специфические поверхностные компоненты Что касается вирусов, то, как было показано, для выработки в организме-хозяине антител в ответ на вирусную инфекцию достаточно очищенных поверхностных белков вируса (белков капсида или внешней оболочки) (рис. 11.1). Вакцины, содержащие лишь отдельные компоненты патогенного микроорганизма, называют субъеди-ничными для их разработки с успехом используется технология рекомбинантных ДНК. [c.228]

    Живая рекомбинантная вирусная вакцина имеет ряд преимуществ перед неживыми вирусными и субъединичными вакцинами 1) презентация аутентичного антигена практически не отличается от таковой при обычной инфекции 2) вирус может реплицироваться в клетке-хозя-ине и увеличивать количество антигена, который активирует продукцию антител В-клетками (гуморальный иммунитет) и стимулирует выработку Т-клеток (клеточный иммунитет) 3) встраивание генов антигенных белков в один и большее число сайтов генома ВКО еще больше уменьшает его вирулентность. [c.241]

    Клонированные гены, рекомбинантные белки, моноклональные антитела, плазмиды, промоторы, векторы, кДНК, моновалентные вакцины [c.535]

    Большинство работ по созданию живых вирусных вакцин проводились на ВКО, однако в качестве кандидатов на роль векторов для вакцинации рассматриваются и другие вирусы аденовирус, полиовирус и вирус ветряной оспы. Вектор на основе живого аттенуированного полиовируса (его исследования только начинаются) привлекателен тем, что позволяет проводить пероральную вакцинацию. Такие слизистые вакцины (вакцины, компоненты которых связываются с рецепторами, расположенными в легюгх или желудочно-кишеч-ном тракте) пригодны для профилактики самьгх разных заболеваний холеры, брюшного тифа, фиппа, пневмонии, мононуклеоза, бешенства, СПИДа, болезни Лайма. Но до любых клинических испытаний любого на первый взгляд безобидного вируса как системы доставки и экспрессии соответствуюхцего гена необходимо убедиться в том, что он действительно безопасен. Например, повсеместно используемый ВКО вызывает у людей осложнения с частотой примерно 3,0-10 . Поэтому из генома рекомбинантного вируса, который предполагается использовать для вакцинации человека, желательно удалить последовательности, ответственные за вирулентность. [c.242]

    Технология рекомбинантных ДНК позволяет создавать надежные вакцины, используя при этом разные подходы. Делетируя гены, ответственные за вирулентность, получают живые вакцины, содержащие непатогенные, иммунологически активные штаммы, которые не могут [c.243]

    ДНК). Положение, согласно которому проверке на безопасность и эффективность должен подвергаться только сам продукт, привело к одобрению лекарственых средств, вакцин, диагностических систем и других продуктов, полученных с помощью технологии рекомбинантных ДНК. [c.519]

    Одним из способов борьбы с заболеванием свиней, вызываемым энтеротокоигенными штаммами, была вакцинация животных препаратом, содержащим антиген К88. Предпринимаютсяг попытки повысить выход применяемого в вакцинах антигена К88, используя технологию рекомбинантных ДНК- Эти методы нашли применение также и в производстве некоего токсоида,. который можно не опасаясь вводить животным для образования у них антител к токсинам, продуцируемым энтеротоксиген-ными бактериями. Другой подход в борьбе с диареей в животноводстве состоит в выведении пород, устойчивых к кодируемым плазмидами антигенам—факторам колонизации. [c.307]

    Однако ни один из этих оболочечных белков, успешно синтезируемых на матрице рекомбинантных плазмид в бактериальной клетке, не стал, и вряд ли в ближайшем будущем станет вакциной субъединичного типа. Это связано с тем, что вирусные белки, синтезированные в бактериальной системе, уступают по иммуногенностн и по выходу продуктов эукариотического синтеза. Сегодня широко применяется противоящурная [c.252]

    Технология рекомбинантных ДНК оказала существенное воздействие на всю клеточную биологию, позволяя исследователям решать задачи, которые раньше казались неразрешимыми, например определять функции многих вновь открытых белков и их индивидуальных доменов, расшифровывать сложные механизмы регуляции экспрессии генов у эукариот. С помощью методов генной тшженерии удалось в большом количестве нолучтгть многие белки, участвующие в регуляции клеточной пролиферации и развтгтии. Применение этих методов должно принести успех в крупномасштабном промышленном производстве белковых гормонов и искусственных вакцин, на получение которых ранее затрачивали очень много сил и средств. [c.229]

    Техника рекомбинантной ДНК открыла еще одну возможность в освоении пути экспрессии клонированных генов вируса гриппа в прокариотах и эукариотах. Эти исследования имели две основные цели 1) получение больших количеств чистых поверхносд -ных антигенов (НА и КА) применительно к проблеме их дальнейшего использования в качестве вакцин 2) изучение в клетках прокариотов и эукариотов биосинтеза, структуры и функции индивидуальных белков вируса гриппа дикого типа или мутантов. Поскольку эти белки в естественных условиях кодируются геномом минус-цепочечной РНК, ранее было невозможно управлять их первичными структурами путем направленных изменений кодирующих их последовательностей нуклеотидов. [c.161]

    Помимо разработки новых вакцин, основанной на технологии рекомбинантной ДНК, ведутся исследования с использованием приемов белковой инженерии. Сведения о первичной структуре белковых антигенов, локализации В- или Т-клеточных эпитопов в структуре молекулы позволяют получать такие эпитопы синтетическим путем. Однако синтезированные пептиды теряют иммуногенность, свойственную целой молекуле. Это препятствие преодолевается использованием адъювантов. Один из них — липосомы, позволяющие доставлять антигенные пептиды непосредственно в антигенпрезентирующие клетки и тем самым обеспечивать запуск специфической реакции. [c.341]

    ДНК хватало для клонирования в системе Е. соИ и получения препаратов вирусной ДНК, пригодных для определения химических свойств ДНК и для получения вакцин иммуиогенетическими методами. Первой вакциной, произведенной с помощью методов рекомбинантных ДНК и получившей в США лицензию, позволяющую использовать эту вакцину для введения человеку, был белок оболочки вируса гепатита В, синтезированный в клетках дрожжей. Была клонирована также ДНК, кодирующая белок оболочки агента, ответственного за гепатит С. Все [c.345]

    Исходно цель опытов с использованием рекомбинантных ДНК состояла в получении важных с медицинской и экономической точек зрения белков, например вакцин и межклеточных пептидных посредников (инсулина, гормона роста и оксигоцина). Идея заключалась в клонировании гена, кодирующего данный полипептид, встраивании его в плазмиду, которая реплицируется в Е. соИ таким образом, чтобы промотор Е. соИ регулировал транскрипцию, а затем в синтезе на рибосомах Е. соИ больших количеств нужного белка. Почему эта довольно прямолинейная схема оказалась сложнее, чем вначале предполагалось (разд. 7.8) Во-первых, в большинстве эукариотических генов имеются интроны, а в генах Е. соИ их нет у бактерий отсутствует механизм сплайсинга, и поэтому невозможно получить соответствующую данному эукариотическому гену мРНК. Во-вторых, из первичных продуктов трансляции многих эукариотических генов, в частности из предшественников полипептидных гормонов, может образоваться активный генный продукт лишь в результате специфического посттрансляционного процессинга, который в клетках Е. соИ не осуществляется. Наконец, успешному получению больших количеств многих эукариотических белков мешает их токсичность для бактериальных клеток, деградация бактериальными протеазами и нерастворимость в цитоплазме бактериальной клетки. [c.359]

chem21.info

Разработка новых вакцин: виды, этапы, применение

 

 

Благодаря достижению в технологиях рекомбинантных ДНК, быстрого автоматизированного синтеза пептидов, а также в других областях биоинженерии (например, в области моноклональных антител) появилась возможность совершенствования доступных вакцин и разработки новых подходов к их созданию.

 

Вакцины, разработанные с помощью рекомбинантных ДНК

Технология рекомбинантных ДНК дает возможность экспрессировать в больших количествах белковые антигены, которые используют в вакцинах. Примером успешного применения технологии рекомбинантных ДНК в производстве вакцин является опыт с вакциной против гепатита В. Это заболевание является основной причиной инфекции печени и в дальнейшем повышения риска возникновения гепатоцеллюлярного рака. В 1970-х гг. путем очищения вирусного антигена от крови донора — постоянного носителя вируса была разработана эффективная вакцина против гепатита В. В конце 1980-х гг. из-за эпидемии ВИЧ подтвердились данные о передаче патогенов с кровью и ее продуктами и появились опасения, что данная вакцина может переносить заболевание. Хотя некоторые исследования и показали безопасность вакцины, произведенной из плазмы, была создана альтернативная вакцина путем экспрессирования антигена гепатита В в дрожжах с использованием технологии рекомбинантных ДНК. Эта рекомбинантная вакцина упрощает выработку антигена, устраняя зависимость от плазмы крови человека, а также любую потенциальную опасность, связанную с непреднамеренным загрязнением антигена вакцины патогенами, находящимися в крови. Технология рекомбинантных ДНК также использовалась для создания первой эффективной вакцины против болезни Лайма. Другие вакцины, созданные с помощью технологии рекомбинантных ДНК, проходят различные фазы клинического тестирования. Некоторые из этих молекулярных методов могут обеспечить нас удобными, безопасными и более эффективными средствами иммунизации, чем в настоящее время.

Разработка новых вакцин

 

Конъюгированные полисахариды

Конъюгатные полисахаридные вакцины произвели революцию в вакцинации против инкапсулированных бактериальных патогенов. Гуморальный иммунитет играет основную роль в защите от инкапсулированных патогенов, но большинство микробных полисахаридов являются Т-независимыми антигенами, которые обычно слабоиммуногенны. Другой проблемой полисахаридных вакцин является то, что организм маленьких детей обычно не дает гуморальный ответ на полисахаридные антигены. В то же время у детей повышен риск инфекций, вызываемых инкапсулированными бактериями, такими как Streptococcus pneumoniae и Haemophilus influenzae. Конъюгация полисахарида с белком (например, столбнячного или дифтерийного анатоксина) приводит к созданию молекулы, ведущей себя как Т-зависимый антиген, и вызывает выраженный ответ со стороны антител на полисахаридную часть. Вакцины, эффективные для этой возрастной группы, создают путем конъюгации таких (бактериальных) полисахаридов или олигосахаридов (например, Н. influenzae) с белками, например дифтерийным анатоксином. В настоящее время доступны конъюгатные полисахаридные вакцины против Н. influenzae типа b и определенных серотипов S.pneumoniae. Разрабатываются конъюгатные полисахаридные вакцины против других возбудителей, таких как:

Конъюгатные полисахаридные вакцины оказывают защитное действие, вызывая сильный гуморальный ответ на полисахаридную часть конъюгата.

 

Вакцины из синтезированных пептидов

Предпосылкой создания вакцин из синтетических пептидов является идея использования иммуногенных пептидов для вызывания иммунного ответа. Вакцины из синтетических пептидов создают на основе информации о последовательности аминокислот в белковом антигене, вызывающем защитный иммунный ответ. Теоретически вакцины из синтетических пептидов обладают преимуществом, поскольку пептиды высокой степени очистки можно производить в больших количествах, а их более простой антигенный состав обеспечивает защиту с гораздо меньшими побочными эффектами. Общий подход заключается в идентификации потенциальных эпитопов в защитном белковом антигене с использованием различных алгоритмов, синтезе ряда пептидов с соответствующей последовательностью аминокислот и проверке их на иммунологическую активность. Одной из проблем, связанных с вакцинами из пептидов, является их слабая иммуногенность ввиду малой величины, что требует их конъюгации с белками-носителями. В настоящее время несколько вакцин из синтетических пептидов проходят клиническое исследование. Пептидная вакцина продемонстрировала свою перспективность в отношении вируса-возбудителя пузырчатки полости рта и конечностей, а также малярии.

Разработка новых вакцин2

 

Антиидиотипические вакцины

Антитела (идиотипы), индуцированные к специфическому эпитопу антигена, обладают антигенсвязывающим центром (антидетерминантой), соответствующим по структуре эпитопу. Если это антитело в свою очередь используется в качестве иммуногена для индуцирования антитела (антиидиотип), реагирующего с антигенсвязывающим центром идиотипа, антиидиотип может по структуре напоминать эпитоп. Эта структурная схожесть называется внутренним образом. Так как внутренний образ (антиидиотипическое антитело) напоминает антиидиотип и естественный антигенный эпитоп, его можно использовать в качестве иммуногена для индуцирования антител против естественного эпитопа. В настоящее время несколько антиидиотипических вакцин исследуются на предмет эффективности при лечении некоторых видов рака человека.

Одним из примеров является иммуноген, состоящий из полученных у мышей антител, против моноклональных мышиных антител к поверхностному антигену вируса гепатита В. Иммунизация этими антиидиотипическими антителами, содержащими внутренний образ эпитопа на поверхностном антигене вируса гепатита В, индуцирует антитела к этому эпитопу. Антиидиотипические антитела можно использовать в тех случаях. Когда токсическое действие определенных биологических токсинов препятствует их применению в качестве антигенов.

 

Вакцины на основе вируса-носителя

С помощью вектора можно ввести в живой вирус (такой как вирус вакцинии, аденовирус или вирус полиомиелита) ген другого организма, кодирующего нужный антиген. Конструкция с вирусом вакцинии размножается в организме, экспрессирует чужеродный антиген и таким образом служит вакциной к данному определенному антигену. Такой подход очень удобен, потому что этот вирус безопасен для организма (например, у индивидуума с нарушенным иммунитетом). Дополнительным преимуществом подобных вакцин является то, что они потенциально способны индуцировать к содержащемуся в них антигену как клеточно-опосредованный иммунитет, так и иммунитет, опосредованный антителами.

Разработка новых вакцин3

 

Вакцины на основе бактерии-носителя

Аттенуированные бактерии, например штаммы Salmonella typhi premium, Escherichia coli и бациллы Кальметта-Герена, могут также служить в качестве переносчиков гена патогена в попытке получить патогенспецифический ответ. Эти бактерии изменяют с помощью рекомбинантных технологий с включением чужеродных генов, которые могут экспрессировать антигены патогенных микроорганизмов и индуцировать иммунные ответы. В будущем Salmonella typhi premium может быть использована, как кишечный патоген для иммунизации слизистых оболочек по отношению к чужеродным антигенам.

Разработка новых вакцин4

 

ДНК-вакцины

Вакцинация с помощью плазмиды, кодирующей последовательность ДНК для защитного антигена, связанного с сильным промотером млекопитающих, может вызвать иммунный ответ на белок.

Считается, что ДНК-вакцины позволяют микробному антигену экспрессироваться внутри клеток организма, которые захватывают плазмиду. Эти вакцины действуют путем производства необходимого антигена внутри клеток. Это является преимуществом, поскольку способствует презентации МНС. Другие преимущества ДНК-вакцин выражаются в отсутствии риска инфекции, большей по сравнению с белковыми вакцинами стабильности, и возможности доставки антигена в клетки, которые обычно не инфицируются патогеном, для лучшей модуляции иммунного ответа. ДНК-вакцины могут быть полезны для иммунизации младенцев, еще имеющих материнские антитела. Возможность иммунизации против некоторых вирусных, бактериальных и протозойных инфекций с помощью ДНК-вакцин была продемонстрирована на лабораторных животных. В настоящее время некоторые ДНК-вакцины проходят тестирование на предмет пригодности для предотвращения и лечения малярии и инфекций, вызванных вирусом гепатита В и ВИЧ.

Разработка новых вакцин5

 

Однако никакие ДНК-вакцины в клинической практике не применяются. Опасение вызывает возможная способность ДНК-вакцин становиться мутагенными, интегрируя в ДНК организма. Однако первые результаты испытаний на человеке указывают на безопасность ДНК-вакцин. На сегодняшний день ДНК-вакцины продолжают быть объектом интенсивных экспериментальных исследований.

 

Анатоксины

Можно инактивировать токсины и получить непатогенные анатоксины, пригодные для вакцинации. Анатоксины представляют собой одни из первых и наиболее успешно применяемых вакцин. Использование анатоксинов, приготовленных из инактивированных столбнячных, ботулинических и дифтерийных токсинов, вызывает ответ со стороны антител, предотвращающих развитие болезни.

Разработка новых вакцин6

 

Анатоксины эффективны, несмотря на тот факт, что естественные инфекции не всегда приводят к длительному иммунитету, вероятно, потому что количества вырабатываемого при инфекции токсина может быть недостаточно для получения сильного иммунного ответа. Таким образом, переболевший столбняком или дифтерией не обладает иммунитетом к повторному заболеванию, но вакцинация анатоксином обеспечивает ему полную защиту.

doctoroff.ru

рекомбинантные вакцины - это... Что такое рекомбинантные вакцины?

 рекомбинантные вакцины
  1. recombinant vaccines

 

рекомбинантные вакцины Производятся при помощи рекомбинантной (генно-инженерные) технологии.[Англо-русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.]

Тематики

  • вакцинология, иммунизация

EN

Русско-английский словарь нормативно-технической терминологии. academic.ru. 2015.

  • рекомбинантная технология
  • рекомбинантные инбредные линии

Смотреть что такое "рекомбинантные вакцины" в других словарях:

  • рекомбинантные вакцины — Производятся при помощи рекомбинантной (генно инженерные) технологии. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики вакцинология, иммунизация EN recombinant… …   Справочник технического переводчика

  • Вакцины рекомбинантные — Рекомбинантные вакцины получают при клонировании генов, обеспечивающих синтез необходимых антигенов, введении этих генов в вектор, введении векторов в клетки продуценты (вирусы, бактерии, грибы и пр.)... Источник: ПОРЯДОК УНИЧТОЖЕНИЯ НЕПРИГОДНЫХ… …   Официальная терминология

  • Вакцина — У этого термина существуют и другие значения, см. Вакцина (значения). Вакцина (от лат. vacca  корова)  медицинский или ветеринарный препарат, предназначенный для создания иммунитета к инфекционным болезням. Вакцина изготавливается… …   Википедия

  • Биотехнологии —   совокупность технологий, использующих характерные для живой природы способы преобразования вещества и получения разнообразных полезных эффектов. Среди этих технологий можно выделить биоинженерию (генную инженерию), биологический синтез… …   Толковый словарь «Инновационная деятельность». Термины инновационного менеджмента и смежных областей

  • Вакци́ны — (лат. vaccinus коровий) препараты, получаемые из микроорганизмов или продуктов их жизнедеятельности; применяются для активной иммунизации людей и животных с профилактической и лечебной целями. Вакцины состоят из действующего начала специфического …   Медицинская энциклопедия

  • Биологические препараты — Биологические препараты  группа медицинских продуктов биологического происхождения, в том числе вакцины, препараты крови, аллергены, соматические клетки, ткани, рекомбинантные белки. В состав биологических препаратов могут входить сахара,… …   Википедия

  • Словарь генетических терминов — # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы …   Википедия

  • Список генетических терминов — Эта страница глоссарий. См. также: Список генетических пороков развития и заболеваний Термины генетики в алфавитном поряд …   Википедия

  • вирус — Термин вирус Термин на английском virus Синонимы Аббревиатуры Связанные термины бактериофаг, капсид Определение (лат. virus – яд) – автономные генетические структуры, не имеющие собственного метаболизма и способные размножаться только в… …   Энциклопедический словарь нанотехнологий

  • Интерферон — Интерфероны  общее название, под которым в настоящее время объединяют ряд белков со сходными свойствами, выделяемых клетками организма в ответ на вторжение вируса. Благодаря интерферонам клетки становятся невосприимчивыми по отношению к… …   Википедия

  • Чума мелких жвачных — Чума мелких жвачных  высококонтагиозная вирусная болезнь овец и коз, протекающая преимущественно остро или подостро, характеризующаяся лихорадкой, язвенными поражениями слизистых оболочек ротовой и носовой полостей, конъюнктивитами,… …   Википедия

normative_ru_en.academic.ru


Смотрите также




г.Самара, ул. Димитрова 131
[email protected]