Забыли пароль?
Регистрация
О компании
Доставка
Каталог товаров  
Контакты
Задать вопрос
Как сделать заказ
Рекомендации
Партнёрам
Получить консультацию

Способ определения лекарственной чувствительности микобактерий туберкулеза. Чувствительность микобактерий туберкулеза к антибиотикам


Определение лекарственной чувствительности выделенных штаммов микобактерий

При лабораторной диагностике туберкулеза недостаточно дать ответ, констатирующий, обнаружены или нет тем или иным методом микобактерий туберкулеза. Для клиники туберкулеза, детального представления о характере микобактериальной популяции и определения прогноза заболевания необходимо изучение различных свойств культур, выделенных от больного: лекарственной чувствительности, ферментативной активности, вирулентности, видовой принадлежности. В некоторых случаях необходимо дифференцировать выделенные культуры и установить характер атипичных культур. Все это обусловливает то разнообразие исследований, которые необходимо проводить при лабораторной диагностике туберкулеза.

Определение лекарственной чувствительности выделенных штаммов микобактерий является необходимым и весьма важным этапом микробиологических исследований. Развитие лекарственной устойчивости обусловлено многими факторами: селекцией устойчивых вариантов в микобактериальной популяции, вегетирующей в организме больного; индукцией противотуберкулезными препаратами или антибиотиками, применяемыми в процессе химиотерапии; передачей эписомного R-фактора чувствительным особям (нехромосомная устойчивость) и др. Следует отметить, что снижение чувствительности микобактерий туберкулеза отмечается ко всем противотуберкулезным препаратам, однако оно может отличаться по степени, характеру, частоте и скорости появления. Известно, что из патологического материала от больных туберкулезом выделяются неоднородные по лекарственной чувствительности микобактерий: устойчивые к одному лекарственному препарату, или моноустойчивые, варианты с истинной двойной или полиустойчивостью, а также смесь вариантов, устойчивых к различным препаратам.

Определение спектра и степени чувствительности микобактерий туберкулеза к противотуберкулезным препаратам имеет важное значение для тактики химиотерапии больных, контроля за эффективностью лечения и определения прогноза заболевания. Степень лекарственной чувствительности микобактерий туберкулеза определяется в соответствии с установленными критериями, которые зависят как от противотуберкулезной активности лекарственного препарата, так и его концентрации в очаге поражения, величины максимальной терапевтической дозы, фармакокинетики препарата и др.

Определение лекарственной чувствительности в настоящее время проводится бактериологическими методами — методом разведений на плотной питательной среде и методом разведений (или абсолютных концентраций) на жидких питательных средах. Имеется много модификаций обоих методов. В качестве унифицированного в России применяют рекомендованный Комитетом по химиотерапии ВОЗ метод определения лекарственной чувствительности микобактерий на плотной среде Левенштейна — Йенсена (без крахмала), в которую перед свертыванием добавляют различные концентрации препаратов. Минимальный набор состоит из 2—3 пробирок с разными концентрациями каждого из используемых в данной клинике препаратов, одной контрольной пробирки со средой без препарата.

Этот метод достаточно точен. Он позволяет применять патологический материал, содержащий любое количество микобактерий, поскольку для определения лекарственной чувствительности используются микобактерий, предварительно выделенные из патологического материала. Поскольку сроки выделения возбудителя на питательных средах составляют не менее 1—1,5 мес, результаты определения лекарственной чувствительности указанным методом можно получить не ранее чем через 2—2,5 мес после забора материала. В этом заключается один из основных недостатков метода. Описанный метод определения лекарственной чувствительности микобактерий после выделения их чистой культуры получил название непрямого метода.

При массивном бактериовыделении (не менее 1—5 микобактерий в каждом поле зрения) применяют прямое определение лекарственной чувствительности при выделении возбудителя непосредственно из патологического материала. Для этого используют метод глубинного посева и метод культивирования на стеклах в жидких питательных средах. Эти методы более трудоемки, требуют дополнительного приготовления мазков, окраски и микроскопирования последних и, кроме того, менее точны, так как невозможно дозировать засев микобактерий. Однако результаты можно получить в более короткие сроки (через 12 дней). Практикуется также прямое определение лекарственной устойчивости на плотных средах, в этом случае результаты можно получить через 3 нед.

Лекарственно-чувствительные штаммы дают рост на средах с препаратами в пределах определенной концентрации, различной для каждого препарата. Штаммы, которые растут при соответственно более высоком содержании этих препаратов в питательной среде, относят к лекарственно-устойчивым. Устойчивость определяют по наличию макроскопически видимого роста на плотных и микроскопического роста — на жидких средах.

Устойчивость данного штамма в целом выражается той максимальной концентрацией препарата (количество микрограмм в 1 мл питательной среды), при которой еще наблюдается размножение микобактерий (по числу макроколоний при посеве на плотные среды и микроколоний при посеве на жидкие среды). Лекарственно устойчивые микроорганизмы способны размножаться при таком содержании препарата в среде, которое оказывает на чувствительные особи бактериостатическое или бактерицидное воздействие. При определении лекарственной устойчивости микобактерий на плотных средах культура считается чувствительной к той концентрации препарата, которая содержится в среде, если число колоний микобактерий, выросших на одной пробирке с препаратом, не превышает 20. Только при наличии более 20 колоний культура расценивается как устойчивая.

Для различных препаратов установлена определенная предельная концентрация, при которой еще наблюдается размножение чувствительных к этому препарату микобактерий. Границей, или критерием устойчивости, называют те первые концентрации препарата в питательной среде, выраженные в микрограммах на 1 мл, при которых начинают размножаться устойчивые особи. Для плотной среды Левенштейна—Йенсена установлены следующие концентрации (мкг/мл):

  • стрептомицин — 5;
  • изониазид — 1;
  • этионамид — 30;
  • протионамид — 30;
  • циклосерин — 50;
  • канамицин — 30;
  • флоримицин (виомицин) — 30;
  • тиоацетазон (тибон) — 2;
  • этамбутол — 2;
  • рифампицин — 20.

Наряду с анализом лекарственной чувствительности все выделенные при посеве медленно растущие штаммы микобактерий подлежат первичной идентификации для определения их видовой принадлежности (М. tuberculosis, М. bovis, М. africanum, М. microti), так как принадлежность возбудителя к тому или иному виду существенно влияет на тактику химиотерапии, прогноз заболевания и др. Одним из основных лабораторных тестов, позволяющих дифференцировать М. tuberculosis и М. bovis и микобактерии всех других видов, служит ниациновый тест. Он основан на уникальной способности микобактерии человеческого типа синтезировать ниацин (никотиновую кислоту) в значительно больших количествах, чем микобактерии бычьего типа и нетуберкулезные микобактерии.

В случае выделения нетуберкулезных (атипичных) микобактерии, как медленно, так и быстро растущих, необходимо прежде всего правильно оценить их роль в заболевании, а затем идентифицировать их. Для установления диагноза микобактериоза надо многократно повторно выделить один и тот же вид микобактерии. Все туберкулезные микобактерии подлежат специальному изучению с помощью бактериологических и биохимических методов идентификации. Порядок и основные методы идентификации определены приказом МЗ СССР № 558 от 8 июня 1978 г. «Об унификации микробиологических методов исследования при туберкулезе», а также изложены в методических рекомендациях «Бактериологическая и биохимическая идентификация микобактерии».

Биологическая проба. При отрицательных результатах бактериоскопии и посева материала, исследуемого на микобактерии туберкулеза, если все же подозревается туберкулез, ставят опыты на животных (так называемая биологическая проба). Это наиболее чувствительный метод выявления возбудителя туберкулеза. Самым чувствительным к туберкулезной инфекции лабораторным животным является морская свинка. Считается, что заражение морской свинки позволяет диагностировать туберкулез даже при наличии в материале, использованном для заражения, 1—5 микробных клеток.

Биологический метод широко применяется в диагностике туберкулеза со времени открытия возбудителя этой инфекции. Он не потерял своей ценности и в настоящее время. Более того, сейчас этот метод с успехом применяется для выявления не только типичных неизмененных, но и разнообразных биологически измененных форм возбудителя, в частности L-трансформированных и фильтрующихся форм. Кроме того, этот метод является основным при определении видовой принадлежности микобактерии, их вирулентности, изучении патогенности атипичных культур. Он широко используется для воспроизведения туберкулеза отдельных органов, исследования аллергических реакций, иммунитета и эффективности химиотерапии при туберкулезе. В последние годы метод применяется при проведении биологических пассажей в процессе изучения биологически измененных форм возбудителя в целях получения биологической реверсии.

При любом методе заражения морских свинок микобактериями туберкулеза у животных развивается генерализованный туберкулезный процесс, заканчивающийся гибелью. Однако следует иметь в виду, что возбудители туберкулеза, устойчивые к препаратам изоникотиновой кислоты, вследствие снижения или потери вирулентности могут не вызывать заболевание у морских свинок и дать отрицательные результаты биологической пробы при одновременном наличии роста на питательных средах при посеве. Это обстоятельство диктует необходимость дифференцированного подхода к результатам биологической пробы и одновременного использования метода посева при проведении заражения животного в диагностических целях.

Для повышения частоты обнаружения микобактерий туберкулеза в патологическом материале многие авторы используют, помимо подкожного, интратестикулярное заражение. При этом в патологическом материале удается чаще выявлять изониазидоустойчивые слабовирулентные микобактерий. Кроме того, для повышения чувствительности биологического метода рекомендуется искусственно снижать естественную резистентность морских свинок ежедневным введением больших доз кортизона (12,5 мг), что позволяет повысить результативность биологической пробы на 15—29% (по данным разных исследователей). Наконец, результативность биологической пробы можно повысить, применяя метод последовательных биологических пассажей. Для этого заражение каждой последующей морской свинки производится гомогенатом органов от предыдущего животного, использованного в биологической пробе. По мере увеличения числа пассажей нарастает выраженность специфических изменений в органах.

Следует подчеркнуть, что особую ценность биологическая проба представляет для диагностического исследования олигобациллярного материала.

Перед заражением морским свинкам с массой 200—250 г ставят реакцию Манту, вводя 0,02 мл альттуберкулина Коха внутрикожно в наружную поверхность бедра, освобожденную от волосяного покрова; контроль — введение такого же количества бульона в другую лапку. При отрицательной реакции через 48 ч свинку можно брать в опыт. Для заражения в диагностических целях можно использовать различный патологический материал: мокроту, мочу, промывные воды, отделяемое ран и др. Исследуемый материал обычно обрабатывают 3% раствором серной кислоты так же, как и для посева. Затем осадок 2 или (лучше) 3 раза отмывают стерильным изотоническим раствором NaCl и центрифугируют. Такое отмывание является обязательной процедурой, поскольку при попадании кислоты животному под кожу может развиться некроз. К отмытому осадку добавляют изотонический раствор NaCl и вводят эту смесь под кожу правой паховой области. За свинками проводят систематическое наблюдение, проверяя появление местного инфильтрата в месте введения материала, изъязвление этого инфильтрата, состояние регионарных лимфатических узлов и места введения материала; повторно ставят реакцию Манту. То же повторяют через 6 нед и далее. При положительных туберкулиновых пробах и наличии местных изменений свинок забивают через 1—1,5 мес, при отсутствии признаков развивающегося туберкулеза — через 3 мес.

Туберкулиновые пробы при наличии туберкулезного процесса становятся положительными через 2 нед — 1 мес после заражения.

На вскрытии свинок, погибших от туберкулеза, наблюдается картина генерализованного туберкулеза. Если при заражении в материале были слабовирулентные микобактерии туберкулеза, то развитие процесса может ограничиться увеличением лимфатических узлов и единичными очажками в органах. Во время вскрытия делают мазки-отпечатки из органов для бактериоскопических исследований. Кроме того, кусочки лимфатических узлов, селезенки, печени и легких вырезают стерильным инструментом, помещают в стерильную ступку, гомогенизируют и засевают на плотные питательные среды. Посевы производят обязательно при отсутствии в органах макроскопически видимых изменений туберкулезного характера. Кроме того, в сомнительных случаях проводят гистологическое исследование тканей.

Для оценки распространенности и характера туберкулезного поражения у морских свинок предложено несколько схем учета макроскопических изменений в органах. Наибольшее распространение в нашей стране получили схемы, разработанные М.В. Триус и Ю.К. Вейсфейлером. По этим схемам специфические изменения в органах и лимфатических узлах оцениваются в зависимости от степени их выраженности плюсами, которые затем переводятся в цифровые показатели.

Микробиологическая диагностика b-трансформированных и фильтрующихся вариантов микобактерии. Все изложенное выше касается разнообразных методов выявления и идентификации классических бактериальных форм возбудителя туберкулеза, не учитывая многообразные формы, возникшие в результате морфологической, тинкториальной и биологической изменчивости микобактерии.

В настоящее время традиционные методы выделения микобактерии туберкулеза все меньше удовлетворяют нужды клиники, так как информативность микробиологических исследований явно недостаточна. Применяемые методы малоэффективны и не позволяют составить представление об истинном состоянии микобактериальной популяции, вегетирующей в организме больного. Это объясняется, с одной стороны, недостаточной чувствительностью ряда методов, а с другой (в значительно большей степени), тем, что большинство таких методов не позволяет выявить возбудитель, находящийся в b-трансформированном состоянии.

b-трансформация

b-трансформация — закономерный этап жизненного цикла микобактерии.b-формы — это варианты бактерий с дефектом клеточной стенки. Им придают особое значение в патологии человека и животных в связи с их способностью длительно существовать в макроорганизме и реверсировать в исходный вид с восстановлением свойственной ему вирулентности. Возможность попеременного или одновременного существования возбудителя в бактериальной и b-форме не только значительно затрудняет диагностику, но и влияет на развитие эпидемического процесса, создавая ложное впечатление об абациллировании источников и стерилизации очагов инфекции.

Таким образом, результаты бактериологических исследований, рассчитанных на выделение только бактериальных форм возбудителя, не могут служить основанием для исключения туберкулезной инфекции и должны дополняться данными, полученными специальными методами, которые направлены на выявление b-форм микобактерий. Последние, как известно, являются закономерно существующей формой возбудителя при разных клинических проявлениях туберкулезного процесса, а также основной формой персистирования микобактерий.

Установлено, что b-трансформация микобактерий закономерна и при использовании специальных методов исследования она может быть выявлена. Из-за биологических особенностей b-форм, для которых характерны резко измененная морфология бактериальных клеток и сниженный метаболизм, выделение их требует специальных методов культивирования и идентификации. b-формы могут обнаруживаться в виде гигантских зернистых тел, скоплений различных по размеру, гомогенности и оптической плотности шаров, гранул, сферопластоподобных образований, светопреломляющих тел и др, b-фюрмы и близкие к ним варианты возбудителя туберкулеза характеризуются повышенной хрупкостью и требуют применения особых методов выделения и условий культивирования: щадящих методов обработки материала, элективных питательных сред, наличия нативных белков и осмотических стабилизаторов.

b-формы выделяются преимущественно у больных, недавно прекративших выделять бактериальные формы. У данного контингента больных с сохранившимися полостями деструкции и воспалительными изменениями в легочной ткани выделение b-форм продолжается еще в течение 3—4 мес и более после прекращения выделения бактериальных форм. Таким образом, целенаправленные поиски b-форм микобактерий показаны у больных, не выделявших или прекративших выделять бактериальные формы, но имеющих явные клинические признаки активного туберкулезного процесса. К таким признакам относится наличие участков деструкции легочной ткани, каверн с неравномерно широкими стенками и с эволютивными воспалительными изменениями в окружающей легочной ткани.

Поиски b-форм микобактерий туберкулеза должны проводиться повторно, многократно, так как выделение их носит периодический характер. В настоящее время разработаны и применяются разнообразные методы микробиологической диагностики b-трансформированных вариантов: бактериоскопические, культуральные, биологические, серологические, иммунофлюоресцентные, гистологические. Разработаны методические основы культурального выделения b-форм, сконструированы элективные питательные среды, предложены методы обработки материала, подобраны адекватные детергенты и осмотические стабилизаторы, разработана схема посева и контролей. Предложены методы окраски b-форм в чистой культуре и патологическом материале; разработаны стандартные и ускоренные методы реверсии и др. Все это позволяет выделять b-формы из разнообразного патологического материала и устанавливать их видовую специфичность.

Основные принципы выделения и идентификации b-форм изложены в методических рекомендациях «Выделение b-форм микобактерий туберкулеза из патологического материала» и «Экспресс-индикация b-форм микобактерий туберкулеза методом иммунофлюоресценции».

Исследованиями последних лет (А.Г. Хоменко, В. И. Голышевская) установлено, что при многих клинических проявлениях туберкулеза (особенно на фоне длительной комбинированной химиотерапии) в организме больных и экспериментальных животных обнаруживаются и ультрамелкие формы возбудителя, проходящие через бактериальные фильтры. Частота обнаружения этих микроорганизмов варьирует в зависимости от формы процесса и особенно от лекарственного режима.

Для выделения ультрамелких форм разработаны культуральный и биологический методы. Основной принцип этих методов заключается в том, что исследованию подвергается материал, последовательно профильтрованный через мембранные фильтры с размером пор 0,65; 0,45 и 0,22 мкм. При этом исследуемый субстрат полностью очищается от бактериальных форм возбудителя, осколков микобактерий и других вариантов изменчивости, в материале остаются только фильтрующиеся формы. Полученный фильтрат засевают на специальные питательные среды или вводят морской свинке. Результаты оценивают по данным бактериоскопии мазков, приготовленных из культивированного фильтрата или в результате реверсии возбудителя в бактериальную форму.

tuberkulez-forever.com

Микобактерии туберкулеза и туберкулез - Микробиология

ссылки

Микобактерии туберкулеза

Возбудителями туберкулеза у человека являются М. tuberculosis (более 90% всех случаев туберкулезной инфекции, М. bovis (5%) и М. africanum (около 3%, главным образом среди населения стран тропической Африки). М. tuberculosis открыт Р. Кохом в 1882 г.
Морфология и физиология
Микобактерии туберкулеза - грамположительные прямые или слегка изогнутые палочки. В состав микобактерии входят липиды (10-40%), миколовая, фтионовая, туберкулостеариновая и другие жирные кислоты. Структурный скелет клеточной стенки микобактерии представляет собой два ковалентно связанных полимера - миколат арабиногалактазана и пептидогликан, к которому присоединены белки, полисахариды, липиды. Такой сложный химический комплекс с высоким содержанием липидов придает клеткам микобактерии туберкулеза ряд характерных свойств: устойчивость к кислотам, щелочам и спирту, а также гидрофобность. Для окраски туберкулезных палочек применяют метод Циля-Нильсена. В культурах встречаются зернистые формы, ветвящиеся, зерна Муха - шаровидные кислотоподатливые, легко окрашивающиеся по Граму. Возможен переход в фильтрующиеся и L-формы. Неподвижны, спор и капсул не образуют. Для культивирования туберкулезных микобактерии в лабораторных условиях используют специальные питательные среды, содержащие яйца, глицерин, картофель, аспарагин, витамины, соли. Чаще всего применяют яичную среду Левенштейна-Йенсена и синтетическую среду Сотона. Размножаются микобактерии туберкулеза медленно. В оптимальных условиях время генерации составляет около 15 ч, тогда как бактерии многих других родов делятся через каждые 20-30 мин. Рост туберкулезных микобактерии можно обнаружить через 2-3 недели и позднее- до 2-3 мес, особенно в первых генерациях. На плотных средах образуются морщинистые, сухие колонии с неровными краями; в жидких средах на поверхности образуется нежная пленка, которая утолщается и падает на дно, среда при этом остается прозрачной. Для получения более гомогенного роста микобактерии к питательным средам добавляют твин - 80 (поверхностно-активное вещество).
Антигены
Антигены микобактерии содержат протеины, полисахариды, липиды, фосфатиды. Антитела к ним определяются в РСК, РНГА, преципитации в геле. Имеются общие и специфические антигены у М. tuberculosis, M. bovis и других микобактерии, включая сапрофитические виды.Патогенность туберкулезных микобактерии связана с прямым или иммунологически опосредованным повреждающим действием липидов (воском Д, мураминдипептидом, фтионовыми кислотами), а также туберкулином. Их действие выражается в развитии специфических гранулем и поражении тканей. Для вирулентных штаммов характерно наличие так называемого кордфактора - гликолипида, состоящего из трегалозы и димиколата. Он разрушает митохондрии клеток инфицированного организма, тем самым нарушая функцию дыхания. Микобактерии не образуют экзотоксин.
Патогенез
В зоне проникновения и размножения микобактерии возникает специфический воспалительный очаг - инфекционная гранулема (первичный эффект). Затем развивается специфический воспалительный процесс в региональных лимфатических узлах и наблюдается сенсибилизация организма. Таким образом, формируется так называемый первичный туберкулезный комплекс. В подавляющем большинстве случаев первичный очаг имеет доброкачественное течение. Он рассасывается, пораженный участок кальцинируется и рубцуется. Однако этот процесс не завершается полным освобождением организма от возбудителя. В первичном очаге и лимфатических узлах туберкулезные бактерии могут сохраняться многие годы, иногда в течение всей жизни. Такие люди, оставаясь инфицированными, приобретают иммунитет к туберкулезу. При неблагоприятных заболеваниях, особенно на фоне плохих социальных факторов (недостаточное и неполноценное питание, неудовлетворительные жилищные условия, сопутствующие заболевания) может наступить активация возбудителя и генерализация процесса. Наиболее часто встречается туберкулез легких. Генерализация инфекции приводит к развитию внелегочных форм туберкулеза: кожи, костей и суставов, почек и других органов. Локализация процесса в определенной степени зависит от путей проникновения микобактерии в организм человека и вида возбудителя. Патогенетически важным является действие на организм инфицированного человека туберкулина. Впервые это вещество получил Р. Кох в 1890 г., а изученный им препарат был назван «старый туберкулин». Очищенный от примесей туберкулин (PPD - очищенный протеиновый дериват) является белком. Внутрикожное введение туберкулина вызывает у инфицированных микобактериями людей местную воспалительную реакцию в виде инфильтрата и покраснения (реакция Манту). Неинфицированные люди никакой реакции на введение туберкулина не дают. Эту пробу применяют для выявления инфицированных, сенсибилизированных людей.
Иммунитет
При туберкулезе иммунитет формируется на фоне первичного инфицирования организма микобактериями, которые длительное время сохраняются в нем. Такая форма иммунитета называется нестерильным и выражается в устойчивости организма к суперинфекции. Кроме того, длительная персистенция микобактерии в организме связана с L-трансформацией возбудителя туберкулеза, а также с широким применением живой авирулентной вакцины BCG для вакцинации населения. При туберкулезе обнаруживаются антитела, относящиеся к разным классам иммуноглобулинов. Антитела можно выявить с помощью различных серологических реакций (РСК, РПГА и др.). Их значение в формировании противотуберкулезного иммунитета до сих пор остается неясным. Полагают, что антитела к микобактериям туберкулеза являются только «свидетелями» иммунитета, не оказывают ингибирующего действия на возбудителя и не отражают его напряженности. Большое значение имеет клеточный иммунитет. Показатели его изменений, если судить о них по реакции бласттрансформации лимфоцитов, цитотоксическому действию лимфоцитов на клетки-«мишени», содержащие антигены микобактерии, выраженности реакции торможения миграции макрофагов адекватны течению болезни. Т-лимфоциты после контакта с антигенами микобактерии продуцируют иммуноцитокины, усиливающие фагоцитарную активность макрофагов. При подавлении функции Т-лимфоцитов туберкулезный процесс протекает в более тяжелой форме. Фагоцитоз при туберкулезе носит незавершенный характер, поскольку микобактерии могут размножаться в макрофагах и частично их разрушают. Сохранение живых микобактерии в тканях обеспечивает повышенную сопротивляемость к суперинфекции, а также «иммунологическую память». Важное значение в формировании иммунитета при туберкулезе имеет аллергия, которая развивается по типу ГЗТ. Защитная роль ГЗТ проявляется в ограничении размножения микобактерии, фиксации их в очагах инфекции, образовании инфекционных гранулем при участии Т-лимфоцитов, макрофагов и других клеток.
Экология и эпидемиология
В естественных условиях М. tuberculosis обитают в организме своих хозяев - людей и некоторых животных (крупный рогатый скот, свиньи). М. africanum вызывает туберкулез у людей в странах тропической Африки. Таким образом, источником инфекции являются больные люди и животные. При активно протекающем туберкулезе с наличием воспалительно-деструктивных изменений они выделяют микобактерии в окружающую среду. Более 80% населения инфицируется туберкулезными микобактериями в раннем возрасте. Наиболее распространен воздушно-капельный путь заражения, при котором возбудитель проникает в организм через верхние дыхательные пути, иногда через слизистые оболочки пищеварительного тракта или через поврежденную кожу. Попадая в окружающую среду, микобактерии туберкулеза длительное время сохраняют свою жизнеспособность. Так, в высохшей мокроте они выживают в течение нескольких недель, на предметах, окружающих больного (белье, книги) - более 3 мес, в воде - более года, в почве - до 6 мес, длительно сохраняются в молочных продуктах. К действию дезинфицирующих веществ микобактерии туберкулеза более устойчивы, чем другие бактерии, требуются более высокие концентрации и более длительное время воздействия для их уничтожения. При кипячении погибают мгновенно, чувствительны к воздействию прямого солнечного света.

Туберкулез

Туберкулез - первично-хроническая инфекционная болезнь человека и животных, которую вызывают патогенные микобактерии. В зависимости от локализации поражения выделяют туберкулез легких, кожи, лимфатических узлов, мозговых оболочек, костей и суставов, мочеполовой системы и брюшной полости. Для современного периода характерно увеличение заболеваемости, тяжелое течение, повышение смертности и появление значительного количества штаммов, резистентных ко многим противотуберкулезным препаратам.В Украине туберкулез у человека чаще всего вызывают Mycobacterium tuberculosis ИМ. bovis. Очень редко это заболевание вызывает avium. В странах Африки, Америки и других континентов подобные туберкулеза заболевания вызывают М africanum, М. asiaticum, М. kansasii, М. fortuitum, М. ulcerans и др.. Эти болезни называют микобактериозах. Еще один представитель из рода микобактерий - М leprae - является возбудителем проказы. Всего насчитывают более 40 видов микобактерий, 24 из них являются патогенными и потенциально патогенными.Лабораторная диагностика туберкулеза и микобакгериозив включает проведение микроскопических, бактериологических, биологических, серологических исследований и постановки аллергических проб. Основным методом является выделение чистой культуры возбудителя, его идентификации и определения чувствительности к противомикробным препаратам.
Взятие материала для исследования
Патологическим материалом служат мокроты, слизи с задней стенки глотки, плевральный экссудат, гной, спинномозговая жидкость, промывные воды бронхов и желудка, моча, испражнения, пунктаты, реже кровь и др.. Больной собирает мокроту в баночку или карманную плевательницу. Лучшие результаты получают при исследовании мокроты, собранной в течение 12 - 24 час. Другие материалы собирают в стерильные банки или пробирки. На них наклеивают этикетку с фамилией и инициалами больного, группу диспансерного учета, цель исследования и направляют в лабораторию. Собранный клинический материал считается потенциально патогенным.
Бактериоскопический метод
Непосредственно из мокроты или осадка, получаемого после центрифугирования гомогенизированный материала изготовляют мазки. Мокрота переносят в чашку Петри, расположенную на темном фоне. С помощью пинцета выбирают слизисто-гнойные жмуточкы, переносят их на середину предметного стекла, накрывают вторым предметным стеклом и растирают материал между стеклами. Так же готовят мазки из навоза и пунктатов. Спинномозговую жидкость отстаивают в течение 18-20 ч в холодильнике и образованную нежную сеточку фибрина осторожно расправляют на предметном стекле. Мочу центрифугируют и мазки изготавливают из осадка. Именно эти мазки обесцвечивают не только кислотой, а спиртом для дифференциации туберкулезных бактерий от М. smegmatis, которая может находиться в моче здоровых людей.Высушенные мазки фиксируют сухим жаром, окрашивают по методу Циля-Нильсена или аурамин-родамином или иным флуорохромом. В препаратах, окрашенных по Цилю-Нильсену, возбудитель туберкулеза имеет вид тонких сплошных палочек рубиново-красного цвета, расположенные поодиночке или группами преимущественно вне клеток.Аурамин-родамином мазки окрашивают в течение 15 мин с подогревом, затем промывают водой, на ЗО с погружают в солянокислый спирт и снова тщательно промывают водой. Если при микроскопии фон мазка имеет сильнл флюоресценцию, нужно несколько погасить 0,25% водным раствором метиленового синего, промыть водой, высушить и исследовать под люминесцентным микроскопом. Туберкулезные палочки светятся золотистым светом на темно-зеленом фоне. Как флуорохромами используют также аурамин, акридинового оранжевого и др.. Для выявления L-форм микобактерий применяют преимущественно фазово-контрастную микроскопию.Положительный ответ дают при обнаружении туберкулезных палочек в мазке после просмотра не менее 100 полей зрения, обязательно указывая количество бактерий в каждом поле зрения. Отрицательный результат микроскопии не дает права исключить диагноз.Существенным недостатком бактериоскопического метода является невысокая чувствительность: микобактерии можно обнаружить в мазке только при наличии 50-100 тыс. микробных тел в 1 мл патологического материала. Кроме того, этим методом невозможно отличить возбудителя туберкулеза от других микобактерий и определить его чувствительность к химиопрепаратам. Для повышения частоты нахождения микобактерий туберкулеза в исследуемом материале (особенно в мокроте) применяют методы обогащения - гомогенизации и флотации.
Метод гомогенизации
Суточную порцию мокроты вносят во флакон, добавляют равный объем 1% раствора NaOH, плотно закрывают резиновой пробкой и встряхивают в шюттель-аппарате 10-15 мин до полного разжижения. Гомогенизированную жидкость центрифугируют, декантат сливают в раствор хлорамина, осадок нейтрализуют 2-3 каплями 10% раствора соляной или 30% уксусной кислоты. Из осадка готовят мазки, окрашивают по Цилю-Нильсену и микроскопируют.
Метод флотации
Порцию мокроты (10-15 мл) гомогенизируют, как выше описано. Колбочку или флакон с разреженным материалом ставят на водяную баню при 55 ° С на 30 мин, затем добавляют 0,5-1 мл ксилола (бензола, бензина, толуола), встряхивают 10 мин и отстаивают полчаса. Ксилол вместе с адсорбированными микобактериями всплывает на поверхность и образует вершкоподибний слой. Доливают дистиллированную воду, чтоб этот слой поднялся в горлышко колбочки или флакона. Стерильной пастеровской пипеткой часть ксилолов слоя переносят на предметное стекло, нагревают на стеклянной пластинке, лежащей на водяной бане при температуре 60 ° С. Высушенный мазок покрывают новой порцией с вершкоподибного материала, снова высушивают и так повторяют до тех пор, пока весь флотационный слой перенесут на мазок. Препарат промывают эфиром, высушивают, фиксируют сухим жаром, окрашивают по Цилю-Нильсену и микроскопируют. Методы гомогенизации и флотации на 10% повышают нахождения микобактерий туберкулеза в исследуемом материале. При этом их удается выявить, если в I мл мокроты находится более тысячи микробных тел.Промывные воды бронхов и желудка можно исследовать за.допомогою гомогенизации или флотации.
Бактериологический метод диагностики
Бактериологический метод диагностики значительно эффективнее, чем бактериоскопический. Он позволяет выявить в 1 мл исследуемого материала 20-100 и более микобактерий. Его используют не только для постановки диагноза болезни, но и для контроля эффективности химиотерапии, определения вирулентности и устойчивости микобактерий к антибиотикам и других противотуберкулезных препаратов, выявления измененных вариантов, особенно L-форм.Почти все исследуемые материалы от больных туберкулезом (кроме крови, спинномозговой жидкости) содержат сопутствующую микрофлору. Поэтому выделить чистую культуру микобактерий без предварительной их обработки невозможно. Д ля уничтожения посторонних микроорганизмов мокрота, гной, промывные воды и другие материалы обрабатывают 20 мин при комнатной температуре двойным объемом 6% раствора серной кислоты или 10% раствором тринатрийфосфата при 37 ° С в течение 18-20 час. Затем обработанный материал центрифугируют, жидкую часть сливают, а осадок нейтрализуют, добавляя 1-2 капли 3% раствора NaOH, или трехкратно отмывают от кислоты изотоническим раствором хлорида натрия.После нейтрализации материал засевают в 3-6 пробирок с плотной средой Левенштейна-Иенсена (картофельный крахмал с глицерином, солями, яичной взвесью и малахитовый зеленый) и Финна-2, которое имеет такой же состав, как и предыдущее, но в нем аспарагин заменен глютаминат натрия. Эти среды рекомендованы ВОЗ как стандартные во всех странах мира для первичного выращивания микобактерий туберкулеза и определения их устойчивости к химиопрепаратам. Д ля других нужд можно использовать глицериновый бульон, среда Петраньяни, Павловского, Сотона.Спинномозговую жидкость, экссудат, кровь, пунктат вносят пипеткой на питательную среду без предварительной их обработки. Все ватные пробки срезают на уровне краев пробирки, проталкивают внутрь на 1-1,5 см и заливают растопленным парафином для предупреждения высыхания среды.Засеяны пробирки инкубируют в термостате при 37 ° С в течение 3-4 недель. Те пробирки со средами, на какие материалы сеяли петлей и втирали в поверхность агара, помещают вертикально. Если посевы делали пастеровской пипеткой, пробирки помещают в термостат в наклонном положении на 2-3 суток, затем вертикально. Посевы просматривают каждые 5-7 дней. Все пробирки с ранним ростом посторонней микрофлоры изымают. В случаях раннего роста характерных колоний (до 5-го дня) делают вывод о наличии швидкоростущих микобактерий, т.е. отрицательный ответ по туберкулезу.Рост туберкулезных бактерий чаще всего появляется через 3 недели, но бывают случаи и через 2-3 месяца. На плотных средах вырастают грубые, шероховатые, сухие, беспигментные колонии, имеющие сморщенную поверхность, утолщенный центр и тонкие, неровные края. По внешнему виду они напоминают дольки цветной капусты или бородавки.Это типичные R-формы колоний, свойственные патогенным штаммам. S-форма колоний желтого или оранжевого цвета, как правило, характерна для других видов микобактерий. Но под влиянием антибактериальных препаратов М tuberculosis также может образовывать мягкие, влажные, пигментированные S-формы колоний. Необходимо отмечать скорость и обилие роста.Значительно реже исследуемый материал сеют на глицериновый бульон, жидкие среды с плазмой крови, бычьей сывороткой или синтетическое среда Сотона. На них микобактерии туберкулеза растут несколько быстрее, имеют вид нежной пленки, которая со временем утолщается, грубеет, становится хрупкой и выпадает в осадок. С жидких сред делают высев в пробирки с плотным средой, что увеличивает число положительных результатов, но исследования длится дольше.Чтобы повысить частоту высева возбудителя туберкулеза, исследуемый материал обрабатывают детергентами, которые обладают бактерицидным действием на другую микрофлору (лауросепт, лаурисульфат натрия, родолан, теапол, цетавлон т.д.). При этом улучшается гомогенизация материала, исключается центрифугирования, скорее вырастают колонии.
Ускоренные методы культивирования
Чтобы значительно быстрее получить рост микобактерий туберкулеза, предложены методы микрокультур Прайса и школьников. Метод Прайса состоит в том, что мокрота, гной, осадок мочи, промывные воды и другой материал наносят толстым слоем на несколько узких предметных стекол (обычные стекла разрезают пополам по длине). Высушенные мазки берут стерильным пинцетом и погружают на 15-20 мин в пробирки с 2% раствором серной кислоты, а затем трижды промывают стерильным раствором хлорида натрия для удаления кислоты. После этого препарат помещают в пробирки или флаконы с жидкой средой Сотона или цитратной кровью. Мазок должен полностью покрываться питательной средой. Для подавления посторонней микрофлоры, которая может иногда оставаться после обработки мазков кислотой, в среду добавляют 10 ЕД / мл пенициллина. Посевы выращивают в термостате при 37-38 ° С. Через 3-4 суток стекла с мазками извлекают, фиксируют сухим жаром, окрашивают по Цилю-Нильсену или родамином и микроскопируют. Вирулентные микрокультуры в препаратах образуют жгуты или Ськосы ", которые формируются под влиянием корд-фактора. Максимальный рост микрокультур отмечается на 7-10 день.Глубинное культивирование микобактерий в гемолизированные крови методом Школьников получает ют путем посева материала, обработанного, как обычно, серной кислотой и промытого 0,85% раствором хлорида натрия. Через 6-8 дней выращивания культуру центрифугируют, из осадка делают мазки, окрашивают по методу Циля-Нильсена или флуорохромом и микроскопируют. В препаратах обнаруживают типичные микрокультуры с характерным расположением в виде кос и жгутов.Чтобы выявить L-формы микобактерий туберкулеза, посев материала после соответствующей обработки кислотой проводят в специальное полужидкую среду, разлитое в пробирки в виде столбика. Выращивают при 3 7 ° С в течение 1 -2 мес. Рост L-форм напоминает облако с о же мелкими включениями, что подобные манной крупы. Изготовленные мазки исследуют под фазово-контрастным микроскопом, с помощью которого лучше обнаруживают различные по морфологии Г-формы. их можно обнаружить и путем последовательных пассажей на гвинейских свинках или с помощью иммунофлуоресцентного метода с использованием сывороток, содержащих меченые антитела против антигенов L-форм.Для идентификации выделенных культур возбудителей туберкулеза и дифференциации от других видов микобактерий используют много признаков. Основными из них являются вирулентность, скорость роста, форма колоний, образование пигмента, каталазы, уреазы, никотинамидазы, нитратредукгазы.Важнейший признак М tuberculosis - ниациновий тест - способность синтезировать значительное количество никотиновой кислоты (ниацина). Каталазная активность относительно слабая и теряется при 68 ° С. Д ля быстрой дифференциации возбудителей туберкулеза человека рекомендуют посев на среду Левенштейна-Иенсена с 500 мкг / мл и 1000 мкг / мл салицилового натрия. Микобактерии туберкулеза при таких условиях на этой среде не растут.Вопрос о вирулентность микобактерий решается на основе биологических проб и обнаружении корд-фактора. Последний определяют методом микрокультур Прайса, а также на основе крепкого связывания таких красителей, как нейтральный красный или нильский голубой. При нанесении на мазок раствора NaOH туберкулезные палочки сохраняют цвет красителя, в то время как невирулентных микобактерии изменяют соответствующую окраску.Для надежной идентификации видов микобактерий в современных условиях разработаны прогрессивные, быстрые и очень точные методы определения в таких исследуемых материалах, как мокрота, плевральная жидкость, ликвор, гной, сыворотка крови, содержимое желудка, ткани и т.д.. Эти объекты, обеззаражены нагревом, хранятся неограниченное время и в любой момент могут быть исследованы. Среди них наибольшего внимания заслуживает молекулярно-генетический метод полимеразной цепной реакции. Он основан на выявлении в биологическом материале ДНК микобактерий. Даже если в материале находится всего 5-10 микробных клеток, с помощью олигонуклеотидов-праймеров запускают синтез специфических фрагментов ДНК в циклотермостати, которые затем можно идентифицировать методом гельэлектрофореза. Результаты исследований получают через 3-4 часа.Специфические антигены в тех же материалах можно быстро обнаружить и с помощью иммуноферментного анализа, если иметь соответствующие антитела, адсорбированные на твердой фазе в полистироловых планшетах.
Определение устойчивости микобактерий к химиопрепаратам
Лекарственную устойчивость возбудителей туберкулеза определяют способом серийных разведений перед началом лечения, через 3 месяца и в дальнейшем при продолжении выделения туберкулезных палочек через каждые 6 месяцев. Это делают путем выращивания культур на средах с различной концентрацией туберкулостатиками.Есть два способа определения резистентности микобактерий: прямой и косвенный. При прямом способе непосредственно сеют соответственно обработанный материал на среды с различными концентрациями антибиотиков или других химиопрепаратов. Он эффективен, но им можно пользоваться только тогда, когда в материале обнаруживают не менее 5 микобактерий в каждом поле зрения. При косвенном способе на среду с противотуберкулезными препаратами сеют предварительно выделенные культуры микобактерий. В обоих случаях обязателен контроль - посев на такое же среду без туберкулостатиками.В современных условиях наиболее распространены такие методы определения лекарственной устойчивости микобактерий:1) культивирования на плотной среде Левенпггейна-Иенсена;2) микрокультивування на стеклах за Прайсом;3) глубинные посевы в полусинтетические среды.В пробирки, содержащие различную концентрацию препаратов, и в одну контрольную (без туберкулостатиками) засевают взвесь выделенной культуры (500 млн микробных тел в 1 мл). Культуру считают чувствительной, если в пробирке с препаратом выросло менее 20 колоний при обильном росте в контроле. Если выросло более 20 колоний, культуру считают устойчивой. Резистентность данного штамма выражают той максимальной концентрацией антибактериальными препарата, при которой еще происходит рост, близкий к росту в контроле.
Биологический метод
Биологический метод диагностики туберкулеза - заражение гвинейских свинок - является чувствительным. Инфицирующая доза возбудителя для этих животных составляет всего несколько бактериальных клеток. Исследуемый материал обрабатывают 2% раствором серной кислоты в течение 20 мин, включая центрифугирования. Затем осадок трижды отмывают 0,85% раствором хлорида натрия и эмульгируют его в 1-2 мл изотонического раствора. Эмульгированных осадок вводят подкожно в паховой области двум гвинейским свинкам массой 250-300 г с отрицательной пробой Манту. При малом количестве материала его вводят в брюшную полость или паранхиму яичка. Такой способ заражения повышает чувствительность биопробы, особенно в тех случаях, когда в материале содержатся маловирулентных палочки туберкулеза, устойчивые к изониазиду и других химиопрепаратов.Через 2-3 недели зараженных животных взвешивают, определяют размеры увеличенных лимфатических узлов и ставят пробу Манту, которую повторяют через 6 недель. Местные патологические изменения, уменьшение массы тела дают основание для вскрытия гвинейских свинок и исследование их внутренних органов. При отрицательных результатах животных умерщвляют через 3-4 мес, гистологически исследуют паренхиматозные органы и делают посевы на элективные среды.Гвинейских свинок используют и для обнаружения L-форм микобактерий туберкулеза. В таких случаях нужно сделать несколько последовательных заражений, поскольку L-формы имеют меньшую вирулентность и вызывают у животных доброкачественное течение туберкулеза, при реверсии L-форм может перейти в генерализованный процесс.В последнее время все шире используют биопробу на белых мышах, заражая их интрацеребральном. Постановка биологических проб на лабораторных животных - это своеобразный "золотой стандарт" при диагностике туберкулеза.
Серологическая диагностика
Для выявления противотуберкулезных антител первоначально были предложены реакции агглютинации, преципитации и связывания комплемента. Теперь их используют редко. Зато стали широко практиковать реакцию непрямой гемагглютинации. Как антиген в ней используются сенсибилизированные эритроциты барана или человека О-группы. их нагружают экстрактом из туберкулезных бактерий или очищенным туберкулином. К 1 мл осадка эритроцитов добавляют 20 мл экстракта микобактерий, выдерживают при 37 ° С в течение 2-х часов и отмывают центрифугированием для удаления избытка антигена. Перед постановкой РНГА сыворотку больного истощают эритроцитарной массой для устранения неспецифического реагирования. Затем сыворотку разводят от 1:2 до 1:272. Диагностическим титром считают разведение 1:8. При туберкулезе РНГА бывает положительной в 70-90% случаев.Хорошие результаты дает также иммуноферментный анализ, иммуноблоттинг и реакция агрегат-гемагглютинации для определения циркулирующих иммунных комплексов. Еще точнее есть радиоиммунный метод, но из-за высокой стоимости диагностикумов и отсутствие радиометрической аппаратуры он редко используется в лечебных учреждениях.Для совершенствования серологической диагностики туберкулеза важно наладить выпуск моноклональных антител к различным антигенам микобактерий. С их помощью можно было бы выявлять специфические эпитопы бактерий, а также соответствующие им антитела. Выявление таких антител будет иметь важное диагностическое значение.
Аллергический метод
Туберкулиновая внутрикожная проба Манту является специфическим диагностическим тестом. Его используют для определения инфицированности населения туберкулезом, массового обследования на туберкулез детей и подростков, отбора лиц, которым необходимо проводить ревакцинацию, проверять ее эффективность, а также с целью диагностики туберкулеза и определение активности процесса Для постановки пробы используют туберкулин. В 1890 г. Роберт Кох предложил первый препарат, так называемый старый туберкулин Коха (Alttuberkulin Koch илиATK). Его изготавливают из смеси культур микобактерий человеческого и бычьего типов, выращенных в глицериновом бульоне в течение 5-6 недель. Культуру стерилизуют текучим паром ЗО мин, выпаривают при 70 ° С до 1 10 первоначального объема, фильтруют через бактериальный фильтр и разливают в ампулы. Туберкулин Коха содержит ряд балластных веществ и трудно поддается стандартизации. Начиная с 1934 p., Для постановки аллергических проб Зейберт предложил высокоочищенный препарат туберкулина, который назвали PPD-S (Purified protein derivative - Seibert). Через 5 лет М.А. Линников изготовила очищенный туберкулин под названием ППД-Л. Его дозируют в туберкулиновых единицах (ТО). 1 ТО содержит 0,00006 мг сухого препарата. Выпускают ППД-Л в двух формах: сухой очищенный туберкулин по 50000 ТО в ампулах и ППД-Л в стандартном разведении в ампулах по 3 мл. В 0,1 мл раствора содержится одна доза (2 ТЕ).Препарат вводят внутрикожно однограммовых туберкулиновым шприцем в объеме 0,1 мл в средней трети предплечья. Перед инъекцией кожу протирают 70% спиртом. Тонкую иглу срезом вверх вводится в поверхностный слой кожи под углом 15 ° к ее поверхности.Результаты аллергической пробы оценивают через 72 ч по следующей схеме: отрицательная проба - полное отсутствие папулы; сомнительна - папула размером 2-4 мм или только гиперемия любого размера; положительная - папула диаметром 5 мм и более гиперергическая - у детей и подростков папула диаметром 17 мм и более, у взрослых - 21 мм и более.
Профилактика и лечение
Для специфической профилактики используют живую вакцину БЦЖ - BCG (Bacille Calmette-Guerin). Штамм BCG был селекционирован А. Кальметтом и Ш.Гереном путем длительного пассирования туберкулезных бактерий бычьего типа (M.bovis) на картофельно-глицериновой среде с добавлением желчи. Ими было сделано 230 пересевов в течение 13 лет и выделен мутант со сниженной вирулентностью. В нашей стране вакцинируются против туберкулеза все новорожденные на 5-7-й день жизни. Ревакцинацию проводят лицам с отрицательной туберкулиновой пробой с интервалом в 5-7 лет до 30-летнего возраста. Тем самым создается инфекционный иммунитет с гиперчувствительностью замедленного типа. Для лечения туберкулеза применяют антибиотики и химиотера-певтические препараты, к которым чувствительны возбудители. Это препараты I ряда: дегидрострептомицин, ПАСК и ГИНК (гидразиды изоникотиновой кислоты - изониазид, тубазид, фтивазид) и II ряда: этионамид, циклосерин, канамицин и др. В связи с распространением в настоящее время лекарственно-резистентных штаммов туберкулезных микобактерий Международный союз борьбы с туберкулезом предложил новую классификацию противотуберкулезных препаратов: I ряда - наиболее эффективные (изониазид и рифампицин), II ряда - препараты средней эффективности (этамбутол, стрептомицин, этионамид, пиразинамид, канамицин, циклосерин), III ряда - малые противотуберкулезные препараты (ПАСК и тибон). В комплексе лечебных мероприятий используется десенсибилизирующая терапия и стимуляция естественных защитных механизмов организма.

Инфекционисты в Москве

Инфекционисты в Москве

vse-zabolevaniya.ru

Определение чувствительности Mycobacterium tuberculosis - Syntest

Определение чувствительности к антибиотикам Mycobacterium tuberculosis, быстрорастущих микобактерий, медленнорастущих нетуберкулезных микобактерий, нокардий и других аэробных актиномицетов.

Планшеты Sensititre® – MYCOTBI, SLOMYCO, RAPMYCO.

Определение чувствительности к АМП микобактерий.

  • Референсный метод микроразведений в бульоне для определения минимальных ингибирующих концентраций (Mycobacterium tuberculosis, быстро растущие микобактерии, в том числе комплексы M. fortuitum и M.smegmatis, Nocardia spp. и другие аэробные актиномицеты, медленно растущие нетуберкулезные микобактерий, в том числе комплекса M. avium, M. kansasii и M. marinum).
  • 12–15 АМП 1-го и 2-го ряда на одном планшете.
  • Длительный срок годности реагентов (12-18 месяцев).
  • Хранение при комнатной температуре.
  • Быстрое получение результатов от 3 до 14 дней.
  • Возможность интерпретации полученных результатов с помощью программного обеспечения.

 

Реагенты и расходные материалы

Для туберкулезных микобактерий

MYCOTBI — 96-луночный планшет для микобактерий туберкулеза (10 шт/упак)

T3441 Среда Миддлбрук 7H9 c OADC (10 пробирок по 10 мл)

T3491 Солевой буфер с TWEEN и стеклянными бусами (10 пробирок по 5 мл)

Для быстрорастущих нетуберкулезных микобактерий

RAPMYCO — Планшет 96-луночный MIC для быстро растущих микобактерий, нокардий и др. аэробных актиномицетов (10 шт/упак)

T3462 Бульон Мюллер-Хинтон с TES, 11 мл (100 шт/упак)

T3339 Стерильная дистиллированная вода (100 шт/упак)

Для медленнорастущих нетуберкулезных микобактерий

SLOMYCO — Планшет 96-луночный MIC для медленно растущих микобактерий (10 шт/упак)

T8006 Бульон Мюллер-Хинтон c OADC, 10 мл (10 шт/упак)

T3339 Стерильная дистиллированная вода (100 шт/упак)

Расходные материалы

E1041 Стандарт мутности 0,5 по МакФарланду (1 шт)

E3010 Дозирующие насадки для автоматической инокуляции (100 шт/упак)

 

Принцип метода

На 96-луночный планшет нанесены антимикробных препаратов в различных концентрациях и положительный контроль роста. Бактериальная суспензия смешивается с соответствующим бульоном и вносится с помощью автоинокулятора во все лунки планшета. Считывание результатов осуществляется визуально с использованием лупы с зеркалом или модуля Vizion для оцифровки изображения планшета. Анализ полученных результатов проводится с помощью программного обеспечения SWIN.

Необходимая комплектация оборудования:

SENSITITRE Nephelometer (V3011)Модуль для стандартизации плотности бактериальной суспензии. Нефелометр калибруется с помощью стандарта оптической плотности 0,5 по МакФарланду (кат.номер E1041).Размеры: длина 190 мм, ширина 140 мм, высота 110 ммВес: 800 гНапряжение: 100-240 В, 47-63 Гц
SENSITITRE AIM (V3020)Модуль для автоматического заполнения планшет суспензией исследуемой культуры.Размеры: длина 338 мм, ширина 312 мм, высота 287 ммВес: 8 кгКоличество встроенных программ дозирования: 12Напряжение: 220-230 В АС, 50-60 ГцМощность: 150 ВА
SENSITITREVizion (V2021)Модуль для оцифровки изображения планшета при визуальном учете результата.Регулировка бокового и заднего освещения.Размеры: длина 263 мм, ширина 354 мм, высота 315 ммНапряжение: 110 – 240 В АС; 50-60 ГцМощность: 8 ВАПолучаемые результаты документируются, сохраняются и анализируются с помощью программного обеспечения SWIN.

 

Планшеты Sensititre®для определения чувствительности микобактерий.

MYCOTBIМикобактерии туберкулеза

SLOMYCOМедленно растущие микобактерии

RAPMYCOБыстро растущие микобактерии, нокардии и др. аэробные актиномицеты

АМП

Диапазон разведений, мкг/мл

Амикацин

0.12-16

1-64

1-64

Амоксициллин/Клавулановая кислота 2:1

2/1-64/32

Цефепим

1-32

Цефокситин

4-128

Цефтриаксон

4-64

Ципрофлоксацин

0.12-16

0.12-4

Кларитромицин

0.06-64

0.06-16

Доксициклин

0.12-16

0.12-16

Этамбутол

0.5-32

0.5-16

Этионамид

0.3-40

0.3-20

Имипенем

2-64

Изониазид

0.03-4

0.25-8

Канамицин

0.6-40

Линезолид

1-64

1-32

Миноциклин

1-8

Моксифлоксацин

0.06-8

0.12-8

0.25-8

Рифабутин

0.12-16

0.25-8

Рифампицин

0.12-16

0.12-8

Стрептомицин

0.25-32

0.5-64

Тайгециклин

0.015-4

Тобрамицин

1-16

Триметоприм/сульфаметоксазол

0.12/2.38-8/152

0.25/4.75-8/152

Канамицин

0.6-4

Офлоксацин

0.25-32

Парааминосалициловая кислота

0.5-64

Циклосерин

2-256

ООО «Синтест»

Официальный дистрибьютор компании TREK Diagnostic Systems в России.

Центральный офис, г. Москва:Телефон: +7 (495) 668-07-93E-mail: [email protected]

syntest.ru

Микробиология - Возбудитель туберкулеза

Возбудитель туберкулеза — Mycobacterium tuberculosis. Открыт Кохом в 1882 г.

Морфология и биологические свойства. Является типичным представителем рода Mycobacterium и обладает наибольшей кислотоустойчивостью. В мазках из мокроты или органов микобактерии — небольшие тонкие палочки размером 1,5—4x0,4 мкм, грамположительны. На искусственных питательных средах могут образовывать ветвящиеся формы. Микобактерии туберкулеза обладают большой полиморфностью: встречаются палочковидные, зернистые, нитевидные, кокковые, фильтрующиеся и L-формы. Как результат изменчивости появляются кислотоподатливые формы, среди которых часто встречаются так называемые зерна Муха.

Морфологически все виды микобактерий туберкулеза сходны между собой и культивируются на одних и тех же питательных средах. Наилучший метод окраски по Цилю — Нильсену.

Факторы патогенности. Микобактерии туберкулеза содержат эндотоксин. Вирулентные штаммы включают особый липид, который получил название корд-фактора. Вирулентность микробов связана также с наличием фтионовых и миколовых кислот, а также полисахаридно-миколового комплекса. Кох получил из туберкулезных бактерий ядовитое вещество белковой природы — туберкулин, патогенное действие которого проявляется только в зараженном организме. Туберкулин обладает свойствами аллергена и в настоящее время его используют при постановке аллергических проб, позволяющих определить инфицированность человека или животных микобактериями. Существует несколько препаратов туберкулина. «Старый» туберкулин Коха (альт-туберкулин) представляет собой фильтрат убитой нагреванием 5—6-недельной культуры микробактерий, выращенной на глицериновом бульоне. «Новый» туберкулин Коха — высушенные микобактерии туберкулеза, размельченные в 5% глицерине до гомогенной массы. Получают туберкулин из микобактерий бычьего вида. Существуют также очищенные от балластных веществ препараты туберкулина (PPD, РТ).

Устойчивость. Микобактерии туберкулеза долго сохраняют жизнеспособность вне организма человека или животного. В высохшей мокроте они живут до 10 мес. Выдерживают температуру 70°С в течение 20 мин, а кипячение — 5 мин; в 5% растворе карболовой кислоты и растворе сулемы 1 : 1000 погибают через сутки, в 2% растворе лизола — через час. Из дезинфицирующих средств наиболее чувствительны к хлорной извести и хлорамину.

Патогенность. Туберкулез широко распространен среди крупного скота, кур; реже болеют мелкий скот и свиньи. Из экспериментальных животных наиболее чувствительны к человеческому типу микобактерий туберкулеза морские свинки, кролики, к бычьему — кролики, морские свинки, к птичьему типу — птицы и белые мыши. Эти свойства микобактерий используют для дифференциации различных их типов.

Патогенез и клиника. Заражение происходит чаще всего воздушно-капельным путем. Инкубационный период при туберкулезе длится 15—30 дней. В случае проникновения микобактерий туберкулеза в организм человека или животного происходит образование туберкулезных бугорков в пораженных тканях. Они представляют собой скопление лейкоцитов и гигантских клеток, в центре которых находятся микобактерии. При хорошей сопротивляемости организма плотная соединительная ткань окружает бугорок и микобактерии не выходят за его пределы, оставаясь жизнеспособными многие годы. У лиц с пониженной устойчивостью к инфекции или при ослаблении иммунного состояния под влиянием неблагоприятных воздействий микобактерии туберкулеза начинают размножаться в первичном очаге, в результате чего туберкулезный бугорок подвергается творожистому некрозу. В процесс иногда быстро вовлекаются значительные части легкого или другого органа.

Различают легочную и внелегочные клинические формы туберкулеза, при которых поражаются кости, суставы, кожа, почки гортань, кишечник и другие органы.Обычно наблюдаются периоды улучшения и ухудшения; конечный результат определяется состоянием макроорганизма. Заболевание может развиваться остро, но чаще протекает хронически, многие годы. Отмечаются слабость, ночные поты, утомляемость, потеря аппетита, небольшие подъемы температуры вечером, кашель. При рентгеноскопии легких обнаруживаются затемнения различной степени: очаговые или диффузные.

Иммунитет. Большинство людей достаточно устойчивы к туберкулезной инфекции, и заражение их в детстве ведет обычно к образованию первичных туберкулезных очагов, подвергающихся обызвествлению (очаги Гона). Приобретенный иммунитет носит характер нестерильного, т. е. сохраняется до тех пор, пока в организме имеется возбудитель.

Микробиологическая диагностика. Включает микроскопический, микробиологический, биологический и серологический методы. Микроскопия — наиболее распространенный метод. Он прост, доступен, позволяет быстро получить ответ. При микроскопии мокроты выбирают гнойные плотные частички, тщательно растирают их тонким слоем между двумя предметными стеклами. Сушат на воздухе, фиксируют пламенем и окрашивают по Цилю — Нильсену. Микобактерии туберкулеза — тонкие, слегка изогнутые палочки, окрашенные в ярко-красный цвет; остальной фон препарата голубой. Недостатком метода является его небольшая чувствительность. Увеличения чувствительности микроскопии при диагностике туберкулеза достигают использованием методов обогащения. Одним из них является гомогенизация материала путем воздействия на него различными веществами, растворяющими слизь (щелочи, антиформин). Затем исследуемый материал центрифугируют, из осадка готовят мазок и микроскопируют. 

Более эффективен метод флотации (всплывание), основанный на том, что после длительного встряхивания гомогенизированного едким натром исследуемого материала с дистиллированной водой и ксилолом (или бензолом) образуется слой пены, всплывающий наверх и захватывающий микобактерии туберкулеза. Слой пены снимают и наслаивают на теплое предметное стекло несколько раз по мере высыхания. Это увеличивает возможность обнаружения микобактерий туберкулеза.

Люминесцентная микроскопия более чувствительна, чем обычная. Препарат готовят, как обычно, фиксируют смесью Никифорова и окрашивают аурамином в разведении 1 : 1000. Затем препарат обесцвечивают солянокислым спиртом и докрашивают кислым фуксином, который «гасит» свечение находящихся в препаратах лейкоцитов, слизи и тканевых элементов, создавая контраст между темным фоном и светящимися ярким золотисто-зеленым светом микобактериями туберкулеза. Препарат микроскопируют в люминесцентном микроскопе. Недостаток микроскопии — возможность ошибок при наличии кислотоупорных сапрофитов.

При отрицательном результате микроскопического исследования используют микробиологические и биологические методы. Исследуемый материал предварительно обрабатывают 6% раствором серной кислоты для уничтожения посторонней микрофлоры.

Микробиологический метод позволяет выявить в исследуемом материале 20—100 микобактерий. От микобактерий туберкулеза дифференцируют по культуральным признакам кислотоупорные сапрофиты (рост сапрофитов возможен при комнатной температуре в течение нескольких дней). Недостатком метода является медленный рост микобактерий туберкулеза на питательных средах (посевы выдерживают в термостате 2— З мес).

Разработаны ускоренные методы выделения культур микобактерий туберкулеза — Прайса и Школьниковой. Сущность этих методов заключается в том, что исследуемый материал наносят на предметное стекло, обрабатывают серной кислотой, промывают изотоническим раствором хлорида натрия и помещают в питательную среду с цитратной кровью. Через 5—7 дней стекло вынимают и опрашивают по Цилю — Нильсену. Микроскопируют при малом увеличении. Микроколонии вирулентных штаммов микобактерий имеют вид жгутов, кос.

При использовании биологического метода обработанный патологический материал вводят в паховую область морским свинкам. Даже при наличии единичных туберкулезных микобактерий животное заболевает: через 6—10 дней регионарные лимфатические узлы увеличиваются, в них обнаруживают большое количество микобактерий туберкулеза. Через 3—6 нед животное погибает от генерализованной туберкулезной инфекции.

Для определения инфицированности организма микобактериями используют аллергический метод. Применяют внутрикожную пробу с туберкулином (реакция Манту) и накожную пробу Пирке. У инфицированных микобактериями на месте введения туберкулина образуются покраснение и припухлость.

Профилактика и лечение. Профилактика основана на своевременном выявлении больных туберкулезом, диспансеризации их, обезвреживании молока и мяса больных животных и птиц. Большое значение имеет также активная иммунизация людей, которая способствует уменьшению заболеваемости, облегчению тяжести течения туберкулезного процесса и снижению летальности. Используют живую вакцину БЦЖ, полученную французскими учеными Кальметтом и Гереном (лат. BCG—Ваcilla Calmette — Guerin) при культивировании туберкулезных микобактерий бычьего типа на глицериновом картофеле с желчью в течение 13 лет. Эту вакцину вводят новорожденным однократно внутрикожно на наружную поверхность левого плеча. Ревакцинацию проводят через 7—12 лет и в дальнейшем 4 раза через 3—6 лет. Иммунитет развивается через 3—4 нед и сохраняется 1 — 17,2 года.

Лечение проводят различными антибиотиками и химиопрепаратами (стрептомицин, ПАСК, ИНХА-17, ларусан, пассомин, тубазид, фтивазид и др.). Разрабатывают и применяют антибиотики резерва: циклосерин, этоксид, тибон, виомицпн, каиамицин и др. В ряде случаев показано хирургическое и курортное лечение.

microbiology.ucoz.org

Бактериологическая диагностика туберкулёза

Методы определения лекарственной чувствительности микобакте­рий. В лабораторной практике используют три основных метода определения лекарственной чувствительности микобактерий: метод абсолютных концентра­ций; метод соотношения резистентности; метод пропорций.

Метод абсолютных (предельных) концентраций заключается в следую­щем. Микобактерий выращивают на питательных средах, содержащих проти­вотуберкулезные препараты (ПТП) в различных концентрациях. Определение лекарственной чувствительности МБТ может быть прямым (посев на среды с противотуберкулезными препаратами патологического материала) и непрямым (посев на среды с противотуберкулезными препаратами выделенных культур микобактерий). Прямой способ позволяет значительно ускорить процесс полу­чения результата, но им можно пользоваться только тогда, когда микобактерий обнаруживаются в исследуемом материале бактериоскопически и содержатся в нем в значительном количестве. Лекарственную чувствительность можно опре­делять на плотных и жидких питательных средах. В современной лабораторной практике ее обычно определяют на среде Левенштейна-Йенсена, не содержа­щей крахмала, которая принята ВОЗ в качестве международного стандарта. Унификация определения лекарственной чувствительности МБТ позволяет по­лучать сравнимые результаты при проведении эпидемиологических исследова­ний. При определении лекарственной чувствительности на плотных питатель­ных средах результат учитывают через 3 недели после посева по макроросту МБТ на поверхности среды, на жидких питательных средах — через 10-12дней по наличию микроколоний в виде переплетающихся жгутов и кос в мазках из осадка.

Определение лекарственной чувствительности на плотных и жидких пи­тательных средах имеет свои преимущества и недостатки. На плотных средах можно получить более четко сравнимые результаты. При массовых исследова­ниях этот метод менее трудоемок, однако он более продолжителен по времени получения результата. В плотных средах во время свертывания может несколь-

12

ко уменьшаться содержание некоторых термолабильных препаратов, например, стрептомицина. Определение лекарственной чувствительности на жидких сре­дах более трудоемко, требует микроскопии препаратов, но результат можетбыть получен в более короткие сроки. Недостатком этого способа является то, что больные, леченные антибактериальными препаратами, могут выделять ми­кобактерий, лишенные корд-фактора, не дающие при размножении жгутов или паукообразных микроколоний, наличие которых служит критерием устойчиво­сти к препарату.

Метод соотношения резистентности (resistance ratio method) заключа­ется в определении соотношения минимальных ингибирующих концентраций противотуберкулезных препаратов для тестируемого штамма и референс-штамма h47R.V, чувствительного ко всем препаратам. Величина соотношения 2 и менее характеризует штамм как чувствительный, 8 и более — как устойчивый.

Вариантом метода минимальных ингибирующих концентраций является E-test. Лекарственная устойчивость микобактерий с использованием этого ме­тода определяется на чашках с агаровой средой, на которые помещают полоски, содержащие градиент концентраций противотуберкулезных препаратов. Чувст­вительность микобактерий к препаратам оценивается по наличию зоны ингиби-рования роста микобактерий вокруг полоски. Использование E-test позволяет определять лекарственную чувствительность МБТ в течение 5-10 дней.

Метод пропорций был предложен Canetti в 1963 году. Он заключается в определении соотношения числа колоний, выросших на среде, содержащей противотуберкулезный препарат, и числа колоний в контрольной пробирке, не содержащей препарата. Это соотношение является отражением пропорции ре­зистентных бактерий в популяции. Метод позволяет количественно оценить степень резистентности штамма МБТ, однако широкое применение его в клас­сическом варианте затруднено вследствие большой трудоемкости. Определение лекарственной чувствительности микобактерий методом пропорций может проводиться с использованием автоматических систем ВАСТЕС, MGIT, Esp Culture System и др.

Целью интерпретации результатов определения лекарственной чувстви­тельности МБТ к ПТП являются прогнозирование клинической эффективности ПТП у конкретного больного и обоснование рекомендаций по проведению оп­тимальной химиотерапии.

В качестве критериев для отнесения штаммов МБТ к категории чувстви­тельных или устойчивых используют пороговые значения минимальных инги­бирующих концентраций (МИК) ПТП, избранные на основе комплекса микро­биологических, фармакокинетических и клинических показателей. Данные о величине МИК ПТП в отношении штаммов МБТ, выделенных от больных,служат микробиологическим критерием для определения величины пороговых концентраций. Кроме того, при определении пороговых МИК учитывают дан­ные по фармакокинетикс ПТП. Основным показателем при этом является мак­симальная концентрация ПТП, которая создается в сыворотке крови послеприема ПТП в среднетерапевтической дозе. Четкая зависимость между этим показателем и величинами пороговых МИК отсутствует. В самом общем виде

13

можно лишь сказать, что пороговые МИК не могут быть выше максимально достижимых в сыворотке крови. И, наконец, третьим критерием для определе­ния пороговых значений МИК служат данные о клинической эффективности ПТП при заболевании, вызываемом микроорганизмами с различными МИК. Таким образом, предложенные в разных странах пороговые значения МИКПТП являются плодом консенсуса между ведущими экспертами, а не результа­том точных расчетов. По мере накопления опыта их периодически пересматри­вают. Несмотря на определенную условность рекомендованных пороговых зна­чений МИК ПТП, они являются единственной основой для первого этапа ин­терпретации результатов оценки чувствительности МБТ к ПТП.

Биологические методы диагностики туберкулеза

Биологическая проба (биопроба). Биопроба является еще одним мето­дом выявления микобактерий. Для этого чувствительных к туберкулезу живот­ных (чаще всего морских свинок) заражают патологическим материалом, взя­тым от больного, и в течение 3 месяцев наблюдают за их весом, поведением, местными изменениями. Если в течение этого срока животное не погибнет, его забивают. Морских свинок, забитых или погибших, обязательно вскрывают и оценивают туберкулезные изменения, произошедшие в их органах животных при развитии специфического процесса. Даже при отсутствии специфических изменений для подтверждения диагноза из лимфатических узлов, легких, пече­ни, селезенки готовят мазки, которые окрашивают по Цилю-Нильсену. Кроме того, кусочки указанных органов гомогенизируют и высевают на питательные среды. В сомнительных случаях выполняют гистологическое исследование тканей. Чувствительность биологического метода выявления микобактерий вы­сока (несколько клеток МБТ на пробу). Однако в последнее время появились сообщения о том, что результат биологического исследования не всегда корре­лирует с данными клинико-рентгенологического обследования.

Определение вирулентности штаммов микобактерий. Как и в общей микробиологии, при туберкулезе под вирулентностью понимают степень пато­генное™, то есть способность штамма МБТ размножаться в организме хозяина и вызывать в нем специфические патоморфологические изменения. Вирулент­ность МБТ обусловливается биологическими особенностями возбудителя ту­беркулеза, с одной стороны, и степенью резистентности макроорганизма — с другой. Определенная степень вирулентности присуща конкретному штамму МБТ и является не видовым (как патогенность), а индивидуальным признаком. Наиболее чувствительными животными для определения вирулентности мико­бактерий туберкулеза являются морские свинки, обладающие слабой естест­венной защитой против туберкулезной инфекции.

Для изучения вирулентности микобактерий суспензию штамма МБТ вво­дят подкожно двум морским свинкам в паховую область и ведут наблюдение за их весом, поведением, местными изменениями. Погибших морских свинок вскрывают. Для оценки степени вирулентности МБТ используют несколько критериев. Один из них — продолжительность жизни лабораторных животных,

14

использованных в эксперименте. К высоковирулентным относят культуры, вы­бывающие гибель морских свинок от генерализованного туберкулеза в период до 45 дней после заражения, к средневирулентным — при гибели через 1,5-3 месяца, к слабовирулентным — при гибели через 3-5 месяцев и более. Виру­лентность культур МБТ можно оценивать также по степени пораженное™ внутренних органов, выраженной в баллах (по М.В. Триус). По этой схеме спе­цифические изменения в органах и лимфатических узлах зараженных свинок оцениваются в зависимости от степени их выраженности плюсами, которые за­тем переводятся в цифровые показатели. Одним плюсом обозначается наличие единичных очагов в органе (селезенке, печени, легком), тремя плюсами — то­тальное поражение, двумя — промежуточная степень поражения. При исследо­вании лимфатических узлов каждый плюс оцениватся в 1 балл, селезенки — в 2, печени — 3, легких — 4 балла. Таким образом, при максимальных специфи­ческих изменениях цифровое обозначение поражения выражается цифрой 30. Е.Ф. Чернушенко разработана схема макроскопической оценки поражения внутренних органов морских свинок, зараженных туберкулезом, согласно кото­рой максимальное поражение организма оценивается в 100 баллов. Эта схема позволяет проводить статистическую обработку результатов. Вирулентность культур микобактерий можно оценивать также по индексу пораженности, предложенному Mitchison. Данный индекс рассчитывают как квадратный ко­рень из отношения пораженности внутренних органов, выраженной в баллах, к числу прожитых животным дней. Такой способ оценки учитывает скорость раз­вития специфических поражений во внутренних органах лабораторных живот­ных. При величине индекса пораженности 1 и более штамм микобактерий от­носят к высоковирулентным.

МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ МЕТОДЫ ДИАГНОСТИКИ ТУБЕРКУЛЕЗА

Полимеразная цепная реакция. Получение более совершенных пита­тельных сред, разработка автоматических систем позволяют сокращать сроки выявления и идентификации микобактерий. Однако они все еще остаются дос­таточно длительными и зависят от количества возбудителя в инфекционном материале. Современные молекулярно-генетические методы открывают в этой области значительные перспективы, так как позволяют с высокой чувствитель­ностью и специфичностью проводить выявление и типирование микобактерий в различном диагностическом материале.

Наиболее часто на практике используется молекулярно-генетический ме­тод, в основе которого лежит принцип полимеразной цепной реакции (ПЦР).

ПЦР — принципиально очень простой метод амплификации, т. е. умно­жения нуклеиновых кислот. Он был открыт в середине 1980-х гг. Kary Mullis с соавторами (биотехнологическая компания «Cetus», США). За это открытие ав­тор был удостоен Нобелевской премии. В последние годы ПЦР становится од­ним и) наиболее широко используемых в современной медицине и биологии методов. И частности, в настоящее время выпускаются диагностические наборы кии НЦ1\ которые используются для выявления ВИЧ, вируса гепатита С, ЦМВ,

15

микобактерий туберкулеза и т. д. в различных диагностических материалах. ПЦР имитирует естественный процесс репликации ДНК, при котором число ее молекул удваивается после каждого цикла. Одно из отличий заключается в том, что ПЦР используется для амплификации не всей хромосомы, а лишь неболь­шого участка ДНК, специфичного для данного вида (последовательность-мишень).

Как известно, при репликации одна цепочка ДНК служит матрицей, на которой с помощью ДНК-полимеразы синтезируется комплементарная ей вто­рая цепочка. Удвоение ДНК с помощью полимеразы происходит от 5'- кЗ'-концу каждой цепочки. Названия «3'» и «5'-конец ДНК» обусловлены по­следовательностью соединения нуклеотидов в цепочке. Направленность цепей в двухцепочечной молекуле ДНК противоположна, т. е. 3'-конец одной цепочки всегда взаимодействует с 5'-концом второй цепочки. Противоположную на­правленность цепей часто выражают термином «антипараллельность». При продвижении ДНК-полимеразы по молекуле ДНК на одной цепочке сразу син­тезируется сплошная комплементарная цепь, на другой происходит синтез не­больших фрагментов ДНК, получивших название фрагментов Оказаки, которые затем сшиваются при помощи фермента лигазы. Для начала работы ДНК-полимеразы необходим участок двухцепочечной ДНК, с которого начинается репликация. Небольшой участок РНК, с которого начинается удвоение ДНК, получил название праймера, или затравки.

Метод ПЦР основан на повторении трех этапов, проходящих при разных температурных режимах. На первом этапе двухцепочечную ДНК денатурируют путем кратковременного нагрева инкубационной системы до 90-95°С. Таким образом, две цепочки ДНК остаются в растворе в не связанном друг с другом состоянии до тех пор, пока температура не будет понижена. На следующем этапе, получившем название этапа отжига праймеров, который проходит при 40-60°С, с участками одноцепочечных молекул ДНК, фланкирующими после­довательность-мишень, связываются праймеры. Это короткие участки РНК длиной около 20 нуклеотидов. Каждая из затравок связывается только с одной цепочкой ДНК. Следующий шаг ПЦР — умножение последовательности-мишени с помощью полимеразы. Поскольку инкубационная система на этапе денатурации нагревается до 90-95°С, в ПЦР используется термостабильная Taq-полимераза, выделенная из Thermits aquaticus. Этап достройки затравок проходит при 70-75°С. На этом заканчивается первый цикл амплификации. Да­лее все этапы повторяются 20-25 раз. В результате количество ДНК-мишени возрастает в геометрической прогрессии.

На практике из патологического материала, взятого от больных, при по­мощи специальных методов выделяют ДНК. К ней добавляют реакционный буфер, смесь нуклеозидтрифосфатов, праймеры, полимеразу и проводят ам­плификацию в программируемом термостате (термоциклере). Результат учиты­вают с помощью электрофореза в агарозном геле или с помощью иммобилизо­ванных фрагментов ДНК. Присутствие в пробе последовательности-мишени свидетельствует о наличии МБТ в исследуемом образце. ПЦР позволяет выяв-

16

Пять 1-10 бактериальных клеток в 1 мл биологического материала. Специфич­ность реакции — 97-98%.

Исследованию методом ПЦР подлежат мокрота, бронхиальный секрет, плевральная и другие жидкости, моча, периферическая и менструальная кровь, соскобы эпителиальных клеток цервикального канала.

Следует отметить, что с помощью ПЦР нельзя определить активность ту­беркулезного процесса, поэтому интерпретировать полученный результат необ­ходимо с учетом клинико-рентгенологических данных. Метод ПЦР можно ис­пользовать как дополнительный диагностический метод при дифференциаль­ной диагностике в комплексе с другими методами лабораторной диагностики туберкулеза и нельзя использовать в качестве скринингового метода для выяв­ления больных туберкулезом из-за возможности ложноположительных резуль­татов. Кроме того, препятствием для широкого использования данного метода служит необходимость использования дорогостоящего оборудования и диагно­стических наборов.

ПЦР — не единственный амплификационный метод детекции микобак-терий. В табл. 5 представлены другие амплификационные методики, позво­ляющие обнаруживать микобактерии.

Таблица 5 Амплификационные методы, используемые для детекции микобактерии

Амплификация последовательности-мишени

PCR

Трехэтапный температурозависимый синтез двухцепочечной ДНК

ТМА

Изотермальный синтез РНК

SDA

Изотермальный синтез одно- и двухцепочечной ДНК

NASBA

Изотермальный синтез РНК

Амплификация праймеров

LCR

Трехэтапный температурозависимый синтез двухцепочечной ДНК

Q-Beta

Автокаталитическая изотермальная репликация РНК бактериофага Q-beta

Сигнальная амплификация

bDNA

Гибридизация последовательности-мишени с сигнальной последовательно­стью ДНК и амплимером (bDNA)

Инфицирование микобактериофагами

LRM

Излучение видимого света при окислении специфического субстрата лю-циферина люциферазой мутантного микобактериофага

Применение амплификационных методик для выявления различий в ге­нетической структуре чувствительных и устойчивых штаммов — еще один но­вый подход к определению лекарственной чувствительности микобактерии. Проводить данные исследования стало возможным благодаря определению нуклеотидных последовательностей генов, мутации в которых приводят к воз­никновению резистентности к противотуберкулезным препаратам. При исполь­зовании амплификационных методов значительно сокращаются сроки исследо­вания. Главным ограничением для их применения служит существование дру­гих механизмов резистентности. С помощью амплификационных методик не 1>бнпружинается около 10% случаев устойчивости к рифампицину, 20% — к июмиашду и 40% к сфептомицину. Поэтому молекулярные методы, веро-

17

ятно, никогда не смогут полностью заменить классические культуральные ме­тоды определения лекарственной устойчивости МВТ.

Генотинирование. Исследования по эпидемиологии туберкулеза в тече­ние длительного времени тормозились отсутствием точного и воспроизводимого метода субтипирования клинических изолятов для изучения распространения штаммов МВТ. Совершенствование молекулярно-генетических методов позво­лило разработать высокоспецифичные маркеры для типирования штаммов МБТ.

Штаммы МБТ невозможно различить с помощью рутинных биохимиче­ских тестов или серологических методов. Устойчивость к ПТП в некоторых случаях является воспроизводимым маркером, но этот маркер не является об­щепринятым. До недавнего времени единственным пригодным методом для типирования штаммов МБТ служил метод фаготипирования. Однако он техни­чески сложен и использовался в немногих лабораториях, поскольку не позволя­ет добиться необходимой специфичности, и с его помощью можно выделить лишь ограниченное число фаготипов.

Генотипирование позволяет использовать в качестве маркеров тонкие различия в хромосоме микобактерий, не вызывающие фенотипических разли­чий. Поскольку получаемая в результате исследования картина индивидуальна для конкретного штамма (как отпечатки пальцев для человека), данный метод получил название геномной дактилоскопии (DNA fingerprint).

Для типирования чаще всего используют специфичную для М. tuberculo­sis повторяющуюся мобильную последовательность ДНК, которая демонстри­рует необходимый уровень полиморфизма. Число копий этой последовательно­сти высоко у большинства изолятов М. tuberculosis (7-20), низко у большинства изолятовМ. bovis от животных (1-4) и у различных штаммовМ. bovis BCG

(1-2).

Метод генотипирования основан на использовании рестрикционных эн-донуклеаз, которые распознают специфические последовательности и нарезают ДНК на фрагменты разной длины. Содержание гуанина и цитозина в микобак-териальной ДНК высоко (около 65%), поэтому целесообразным признано ис­пользование энзимов, распознающих фрагменты, богатые аденином и тимином, и разрезающих ДНК на небольшое число крупных фрагментов.

Стандартный метод предусматривает следующие этапы: выделение ми-кобактериальной ДНК, ее рестрикцию с использованием эндонуклеаз, разделе­ние рестрикционных фрагментов путем электрофореза и детекцию последова­тельности-мишени посредством гибридизации с меченой ДНК. Полученная в результате совокупность электрофоретических полос (фингерпринт) отражает число копий данной последовательности ДНК (каждая полоса соответствует одной копии последовательности-мишени), а также гетерогенность в длине ре­стрикционных фрагментов, которая обычно является результатом точковых му­таций, создающих или уничтожающих сайты рестрикции, либо делеций или других хромосомных перестроек, что нашло отражение в термине «полимор­физм длины рестрикционных фрагментов» (Restriction Fragment Length Poly­morphism, RFLP).

18

Использование метода в стандартном варианте осложняется необходимо­стью экстракции почти 1 мкг ДНК из каждого изолята. Поэтому в настоящее ■ремя разработаны два варианта метода геномной дактилоскопии, основанные на использовании ПЦР. Они позволяют использовать очень маленькое количе­ство ДНК и получать картину, сопоставимую по специфичности со стандарт­ным методом. В таких вариантах исследование может быть выполнено на бак­териях из нескольких колоний или старых нежизнеспособных культурах, а так­же клинических бактериоскопически положительных образцах.

Выделенные при вспышке заболевания изоляты МБТ с большой долей вероятности демонстрируют одинаковую генотипическую картину. Поэтому изоляты, связанные с конкретной вспышкой заболевания, можно легко иденти­фицировать. Однако пока не проведено масштабное исследование с целью оп­ределения предполагаемого числа возможных генотипических вариантов в кон­кретном географическом регионе.

Первым применением генотипирования изолятов МБТ было отслежива­ние вспышек туберкулеза. Так, с использованием этого метода была установле­на причина вспышки туберкулеза, вызванной инъекциями контаминированных лекарственных препаратов. Эта работа продемонстрировала полезность геном­ной дактилоскопии для проведения эпидемиологических исследований и пока­зала, что с использованием данного метода можно идентифицировать изоляты, связанные со вспышкой, среди большого количества изолятов. Доказана полез­ность геномной дактилоскопии в отслеживании распространения полирези­стентных штаммов. В результате нескольких исследований было описано нозо-комиальное распространение таких штаммов среди ВИЧ-инфицированных больных. В каждом из таких исследований были идентифицированы 1 или 2 штамма, связанные со вспышкой заболевания. Используемая для типирования последовательность ДНК не кодирует лекарственную чувствительность, поэто­му резистентность к ПТП не влияет на картину фингерпринта. Однако в данном случае фингерпринт может служить маркером данного штамма и указывать на лекарственную резистентность новых изолятов с таким же фингерпринтом.

При эпидемиологических исследованиях вспышек полирезистентного ту­беркулеза лекарственная устойчивость указывает на возможность эпидемиоло­гической связи между штаммами, геномная дактилоскопия обеспечивает окон­чательное доказательство. Метод даже более полезен для проведения исследо­вания полирезистентных изолятов, поскольку это единственный метод доказа­тельства родства штаммов. Широкомасштабное применение этого метода ко всем изолятам в данной географической зоне может выявить циркулирующие штаммы МБТ и идентифицировать ранее неизвестные источники распростра­нения туберкулезной инфекции. Однако в настоящее время еще не установлено, является ли такое применение метода практически осуществимым, поскольку лабораторное изучение изолятов МБТ легче, чем исследования, необходимые для отслеживания распространения штаммов с использованием геномной дак­тилоскопии. Метод можно также использовать для подтверждения кросс-контаминации культур и других ошибок, допускаемых при лабораторном ис-гислонштн

19

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

  1. Провести микроскопию мазка мокроты, окрашенного по Цилю-Ниль-сену, а также количественную оценку результата.

  2. Провести бактериоскопию мазка мокроты, окрашенного флуорохро-мами.

  3. Оценить морфологию и массивность роста микобактерий туберкулеза и атипичных микобактерий на яичной питательной среде.

  4. Проанализировать результаты бактериологического исследования у курируемых больных.

  5. Проанализировать результаты определения лекарственной устойчиво­сти микобактерий туберкулеза у курируемых больных.

ЛИТЕРАТУРА

Основная

1. Перелъман М.И., Корякин В.А., Протопопова Н.М. Фтизиатрия. - 1996.

Дополнительная

  1. Хоменко А.Г. Туберкулез: - 1996.

  2. Чернеховская Н.Е., Свистунова А.С., Свистунов Б.Д. Туберкулез на рубеже веков. -2000.

\

ОГЛАВЛЕНИЕ

Мотивационная характеристика темы,

требования к исходному уровню знаний3

Контрольные вопросы из смежных дисциплин3

Контрольные вопросы по теме занятия4

Учебный материал, 4

Возбудитель туберкулеза4

Диагностический материал для исследования на туберкулез5

Методы бактериологической диагностики туберкулеза7

Биологические методы диагностики туберкулеза14

Молекулярно-генетические методы диагностики туберкулеза15

Задание для самостоятельной работы студентов20

Литература20

Учебное издание

Авдеев Георгий Сергеевич Залуцкая Оксана Михайловна Кривонос Павел Степанович и др.

СОВРЕМЕННАЯ БАКТЕРИОЛОГИЧЕСКАЯ ДИАГНОСТИКА ТУБЕРКУЛЕЗА

Методические рекомендации

Ответственный за выпуск Г.С. Авдеев

Редактор Л.В. Харитонович

Компьютерная верстка Н.М. Федорцовой

Подписано в печать & &, С5.03 Формат 60x84/16. Бумага писчая «Снегурочка».

Печать офсетная. Гарнитура «Times».

Усл. печ. л. j$9. Уч.-изд. л. 4 £/9- Тираж j5ЈC3K3- Заказ £44 .

Издатель и полиграфическое исполнение -

Белорусский государственный медицинский университет.

ЛВ № 410 от 08.11.99; ЛП № 51 от 17.11.02.

220050, г. Минск, Ленинградская, 6.

studfiles.net

Способ определения лекарственной чувствительности микобактерий туберкулеза

Изобретение относится к области микробиологии и может быть использовано для определения лекарственной чувствителности микобактерий туберкулеза. Сущность способа состоит в том, что диагностический материал предварительно заливают раствором хлоргексидинбиглюконикума, гомогенизируют, оставляют на 10-12 часов при комнатной температуре, центрифугируют, осадок заливают жидкой средой Школьниковой, инкубируют при 37°С в течение 3 суток, сливают надосадочную часть среды Школьниковой, заливают свежей средой Школьниковой, осадок перемешивают, засевают на плотные яичные среды и чувствительность штамма определяют через 3 недели по наличию роста только в контрольной пробирке. Техническим результатом является повышение точности способа и сокращение сроков определения.

 

Данное изобретение относится к области медицины, разделу “бактериология”, а именно к лабораторным методам диагностики туберкулеза.

Известные в практических лабораториях методы определения чувствительности микобактерий туберкулеза к противотуберкулезным препаратам длительны и предполагают (с учетом выхода культур) срок 49-60 дней. Методы определения чувствительности к противотуберкулезным препаратам с применением современных технологий используются в силу своей дороговизны далеко не во всех лабораториях. Кроме того, в арсенале фтизиобактериологов имеется метод прямого определения лекарственной чувствительности. Этот метод предполагает наличие микобактерий в исследуемом материале, подтвержденный методом прямой бактериоскопии. Но и он не всегда позволяет получить положительный результат.

Таким образом, поиск достаточно быстрого, с гарантированным результатом данных лекарственной чувствительности микобактерий туберкулеза к противотуберкулезным препаратам в условиях практических лабораторий сохраняет свою актуальность и имеет предпосылки для его усовершенствования.

Прямым способом определение лекарственной чувствительности осуществляется как на жидких, так и на плотных питательных средах (Т.Н.Ященко, И.С. Мечева Руководство по лабораторным исследованиям при туберкулезе М., Медицина. - 1973. - С.60-71.)

1. Определение лекарственной чувствительности микобактерий туберкулеза к противотуберкулезным препаратам на жидких питательных средах.

Из мокроты приготавливают и обрабатывают мазки. Количество мазков определяется количеством противотуберкулезных препаратов и тех концентраций, к которым предполагается изучить устойчивость микобактерий. Обработанные мазки опускают стерильным пинцетом в бактериологические пробирки, в которые предварительно разлиты среды с различным содержанием противотуберкулезных препаратов и контрольную со средой без препарата. Через 10-14 дней пробирки со стеклами стерилизуют. После стерилизации мазки вынимают из пробирок, высушивают, фиксируют над пламенем, окрашивают по Циль-Нильсену и микроскопируют (Т.Н.Ященко, И.С. Мечева. Руководство по лабораторным исследованиям при туберкулезе. М., Медицина. - 1973. - С.60-71.)

2. Определение лекарственной чувствительности МБТ к противотуберкулезным препаратам на плотных питательных средах.

Диагностический материал (мокрота), при наличии бактериоскопическим методом по Циль-Нильсену 1-5 палочек микобактерий, обрабатывают также как для обычного посева.

Обработка материала с использованием для посева осадка (Т.Н.Ященко, И.С.Мечева Руководство по лабораторным исследованиям при туберкулезе М., Медицина. - 1973. - С.37). Для обработки берут равное по отношению к материалу количество 10% раствора трехзамещенного фосфорно-кислого натрия, хорошо перемешивают и помещают в термостат на 20-24 часа, после чего смесь центрифугируют и осадок засевают на 3-4 пробирки яичной среды.

При прямом методе определения лекарственной устойчивости микобактерий туберкулеза на плотных средах патологический материал обрабатывают вышеуказанным способом и засевают на плотные питательные среды, содержащие различные концентрации противотуберкулезных препаратов. Чтение результатов определения чувствительности через 21 день инкубации (Т.Н.Ященко, И.С. Мечева. Руководство по лабораторным исследованиям при туберкулезе. М., Медицина. - 1973. - С.70-71.)

Первичное культивирование микобактерий туберкулеза из диагностического материала затруднено тем, что при посеве бактериоскопически положительного диагностического материала не всегда удается получить результат, т.е. данный прототип недостаточно информативен. И как следствие клиницисты получают отрицательный результат прямого определения и вынуждены ждать выхода культуры для определения лекарственной чувствительности микобактерий туберкулеза непрямым методом, т.е. сроки получения результатов удлиняются.

С целью повышения информативности исследования предложен способ определения лекарственной чувствительности микобактерий туберкулеза путем посева люминесцентно-положительного диагностического материала на плотную питательную среду отличающийся тем, что перед посевом на плотную яичную среду, с антибактериальными препаратами осадка с диагностического материала последний заливают жидкой средой Школьниковой. После подращивания микобактерий туберкулеза в течение 3-х суток производится замена надосадочной жидкости на свежую среду Школьниковой в количестве 3 мл.

Материал (мокрота) подвергается первичной обработке с целью подавления сопутствующей микрофлоры, что предупреждает загрязнение посевов. Обработка проводится по Балану В.Ф. хлоргексидинбиглюконикумом.

Диагностический материал заливается равным объемом (1:1) 0,05% раствора хлоргексидинбиглюконикумом. Тщательно гомогенизируют. Оставляют на 10-12 часов при комнатной температуре. На следующий день материал центрифугируют при 1500-2000 об\мин в течение 10 мин. Сливают надосадочную жидкость, оставив осадок. Последний заливают 2,0 мл жидкой среды Школьниковой. Инкубируют в термостате при Т 37°С в течение 3 суток. По истечении этого срока, надосадочную часть среды Школьниковой сливают, не центрифугируя. Заливают 3,0 мл свежей среды Школьниковой. Осадок перемешивают и засевают по 0,2 мл на плотные яичные среды с содержанием противотуберкулезных препаратов. Срок выдачи результатов через 3 недели (21 день).

Пропись полусинтетической среды Школьниковой (Т.Н.Ященко, И.С. Мечева Руководство по лабораторным исследованиям при туберкулезе М., Медицина. - 1973. - С.153):

Калия одноосновного фосфорно-кислого - 1,5 г

Натрия двуосновного фосфорно-кислого - 2,5 г

Магнезии серно-кислой - 05 г

Натрия лимонно-кислого (среднего) - 1,5 г

Железа лимонно-кислогоаммиачного - 0,005 г

Л-аспарагина - 1 г

Воды дистиллированной 1 л

Таблица 1
Сравнение сроков выхода и интенсивности роста культур микобактерий туберкулеза пересеянных с жидкой среды Школьниковой на яичные среды
Сроки пересева с жидкой среды на плотнуюСроки выхода культур на яичной среде (дни, сред. арифм.)Интенсивность роста на яичной среде
Через 3 дня15,5+++
Через 5 дней15,5++
Через 7 дней17,5+
(Интенсивность роста МВТ оценивалась в крестах: ++ до 20 колоний; +++ больше 20 колоний)

При наличии роста микобактерий только в контрольных пробирках штамм считается чувствительным. При наличии роста более 20 колоний микобактерий в пробирках с той или иной концентрацией препарата культура расценивается, как устойчивая.

Таблица 2
Сравнение сроков выхода и интенсивности роста культур микобактерий туберкулеза без замены и с заменой на свежую жидкую среду при пересеве на яичные среды
 Сроки выхода культур на яичной среде (дни, сред. арифм.)Интенсивность роста на яичной среде
Без замены на свежую жидкую среду Школьниковой15,5+
С заменой на свежую жидкую среду Школьниковой12,5+++

Доказано, что наиболее оптимальный срок инкубирования осадка с нативного материала является 3-х дневный. В табл. 1 приводятся сравнительные данные по срокам выхода культур микобактерий туберкулеза и интенсивности роста микобактерий в зависимости от сроков пересева осадка диагностического материала с жидкой среды на яичную. Из приведенных данных следует, что наиболее оптимальный срок пересева с жидкой среды на яичную через 3 и 5 дней роста. Но при сроке “через 3 дня” на яичной среде отмечается более интенсивный рост культур микобактерий.

Таблица 3
Рост микобактерий туберкулеза при определении лекарственной чувствительности предложенным и сравниваемым методами
Группы БольныхРост микобактерий туберкулеза А.ч., %Роста микобактерий туберкулеза нет А.ч., %
Контрольная186
N=2475,0%25,0%
Опытная22-
N=25100,0% 

После 3-х дневной инкубации осадка обязательным является замена среды Школьниковой на свежую среду. Проведенными экспериментами доказано, что если произвести пересев осадка диагностического материала без замены жидкой среды на свежую сроки выхода культур микобактерий удлиняются до 15,5 дней и интенсивность роста на яичной среде оценивается до 1 креста. Если среда в которой производили инкубирование в течение 3-х дней сливается и заменяется на свежую, то отмечается укорочение сроков выхода культур в среднем до 12,5 дней и что самое важное интенсивность роста микобактерий оценивается в 3 креста, что является основным при оценке роста микобактерий на яичной среде при определении лекарственной чувствительности (табл.2). Данная манипуляция способствует удалению токсических продуктов метаболизма микобактерий, образовавшихся во время лаг-фазы размножения микроба.

Предложенный способ определения лекарственной чувствительности микобактерий туберкулеза к противотуберкулезным препаратам испытана на 49 больных различными формами туберкулеза, с установленным люминесцентно-положительным мазком мокроты (24 - контрольная группа, 25 - опытная). В контрольной группе больных лекарственная чувствительность определялась на плотных средах, в опытной предложенным методом. Результаты исследований приведены в таблице 3.

У больных с люминесцентно-положительным мазком мокроты использование предлагаемого способа определения лекарственной чувствительности к противотуберкулезным препаратам с предварительным подращиванием микобактерий в жидкой питательной среде позволило получить результат в 100% случаев. Предлагаемый нами способ определения лекарственной чувствительности прост в выполнении, доступен для любой микробиологической лаборатории.

Способ определения лекарственной чувствительности микобактерий туберкулеза путем посева диагностического материала на плотную яичную питательную среду с антибактериальными препаратами, отличающийся тем, что предварительно диагностический материал заливают равным объемом 0,05%-ного раствора хлоргексидинбиглюконикума, гомогенизируют, оставляют на 10-12 ч при комнатной температуре, центрифугируют 10 мин при 1500-2000 об/мин, осадок заливают 2,0 мл жидкой среды Школьниковой, инкубируют при 37°С в течение 3 суток, сливают надосадочную часть среды Школьниковой, заливают 3,0 мл свежей среды Школьниковой, осадок перемешивают, засевают по 0,2 мл на плотные яичные среды и чувствительность штамма определяют через 3 недели по наличию роста только в контрольной пробирке.

www.findpatent.ru

Вопрос 27. Методы диагностики туберкулеза

В соответствии с современными программами ВОЗ основой выявления туберкулеза за рубежом считают проведение микроскопии мазков мокроты, полученной от кашляющих больных, обратившихся к врачам общей практики; мазки окрашивают по Цилю-Нильсену. Обязательное бактериологическое исследование мокроты на М. tuberculosis должно быть организовано для нетранспортабельных больных, больных хроническими заболеваниями органов дыхания и мочевыводящей системы, а также для работников неблагополучных по туберкулезу животноводческих хозяйств.

Окраска материала по Цилю-Нильсену — наиболее употребимый метод окраски М. tuberculosis. На фиксированный мазок кладут кусочек фильтровальной бумаги, размерами не превышающий размер покровного стекла; наливают на бумагу фуксин Циля и осторожно нагревают его на горелке до появления пара, после чего оставляют препарат, чтобы он немного остыл. Затем снимают бумагу с фуксином, ополаскивают препарат водой, опускают в стаканчик с 5%-ным раствором серной кислоты или смесью 10 частей спирта с 1 частью соляной кислоты, прополаскивают до обесцвечивания. Тщательно промывают водой. Докрашивают любым раствором метиленового синего в течение 3-5 мин. Мазок, окрашенный по Цилю-Нильсену, вместо докрашивания метиленовым синим можно протравить насыщенным раствором пикриновой кислоты (по Шпенглеру). Палочки, устойчивые к кислоте и спирту, окрашиваются в красный цвет, все остальные микроорганизмы — в синий. Окрашенные по Цилю-Нильсену мазки микроскопируют с иммерсионной системой не менее 10 мин. Если в окрашенном мазке содержится не менее 5 микобактерий в одном поле зрения (принято смотреть 100 полей), вероятность высева очень высока.

Наряду с мазком в развитых странах золотым стандартом считают посев мокроты на элективные среды (Левенштайна-Йенсена и др.) и определение чувствительности к туберкулостатикам. Но это уже обязанность бактериологических лабораторий, наиболее профессионально работающих при ПТД или учреждениях Госсанэпиднадзора. Сильная бактериологическая служба при неинфекционных больницах скорее исключение, чем правило.

Посев материала на среду Левенштайна-Йенсена проводят в бактериологической лаборатории. Рост первых колоний на классических средах отмечают через 4-8 недель. Современные методы с использованием высокоселективных сред позволяют выращивать культуры за 1-2 недели, но идентификация микроорганизма требует дополнительного времени. Современную технику посева считают очень информативной, и в развитых странах в настоящее время не проводят биологические пробы с заражением морских свинок. М. tuberculosis обладает свойством вырабатывать ниацин, что отличает ее от других микобактерий. Для более быстрой идентификации микобактерий разработаны методы гибридизации нуклеиновых кислот.

Если культура выделена, можно определить тип возбудителя и его чувствительность к антибактериальным препаратам. Для дифференциации возбудителя особенно важно определять термостабильность каталазы, поскольку это свойство отсутствует только у М. tuberculosis и М. bovis, наиболее патогенных и вирулентных для человека.

Чувствительность микобактерий к антибактериальным препаратам оценивают с помощью различных методов:

  1. диско-диффузионный метод — простейший из них. В агар инокулируют взвесь тестируемого микроорганизма, затем на агар накладывают диск, содержащий антибиотик, а чувствительность определяют посредством измерения зоны подавления роста (оценивают в миллиметрах). Этот метод чаще применяют для определения чувствительности неспецифической флоры, а не микобактерий;

  2. во фтизиатрии чаще применяют метод разведения, относимый к стандартизованным методам тестирования in vitro. Микроорганизм инокулируют в тестируемую среду (агар или бульон) и используют серийные двойные разведения антибиотика. Чувствительность определяют измерением концентрации антибиотика, угнетающей рост микобактерий. Таким образом можно определить минимальную ингибирующую концентрацию (МИК) — наименьшую концентрацию в серии двойных последовательных разведений антибиотика, полностью подавляющую видимый рост микроорганизмов;

  3. в последние годы распространение получил метод оценки чувствительности бактерий с использованием Е-тестов. Е-тестом называют пластиковую полоску с нанесенным стабильным градиентом концентрации антибиотика. Полоску помещают на агар с инокулированной взвесью микроорганизмов, как и при диско-диффузионном методе. Немедленное высвобождение антибиотика из Е-теста создает стабильный градиент вдоль оси полоски. Соответственно концентрации антибиотика вдоль полоски располагается эллипсовидная зона отсутствия роста колоний, позволяющая считывать со шкалы Е-теста значение МИК. В отличие от диффузии с дисков Е-тест — стандартизированный количественный метод.

Пороговые значения для определения устойчивости: для изониазида — 1 мкг/мл, для рифампицина — 20 мкг/мл, для стрептомицина — 10 мкг/мл, для канамицина — 30 мкг/мл, для виомицина — 30 мкг/мл, для этамбутола — 5 мкг/мл, для этионамида и протионамида — 30 мкг/мл, для циклосерина — 50 мкг/мл, для ПАСК — 10 мкг/мл, для тиоацетазона — 2 мкг/мл;

В настоящее время разработаны коммерческие тестовые системы для определения чувствительности in vitro, основанные на методах диффузии и разведения (bioMeriex, Франция; Roche Diagnostics, Швейцария; Giles Scentific, США и др.). Эти тесты в России пока практически недоступны. Многие современные коммерческие тесты используют также ДНК-полимеразный метод (полимеразную цепную реакцию, ПЦР-метод), позволяющий обнаруживать в исследуемом материале буквально считанные микобактерий (10-1000 особей) путем идентификации участка ДНК и его многократного повторения (амплификации). Результат исследования может быть получен в течение 2 ч. Несмотря на то что уже имеются коммерческие тест-системы Amplicor и Genprobe, пока широкого распространения ПЦР-метод еще не получил.

В настоящее время происходит изменение системы выявления и лечения туберкулеза. Реальную помощь предлагает фонд Сороса. Его сотрудники провели экономический анализ существующих программ. По их данным стоимость выявления одного больного при проведении массовых обследований посредством флюорографии составляет около 4000 долл., а бактериологически с применением мазка — 1500 долл. Эти цифры обосновывают рациональность внедрения DOTS в условиях сложной экономической ситуации.

www.medkurs.ru


Смотрите также




г.Самара, ул. Димитрова 131
[email protected]