Неживые (инактивированные) вакцины. Вакцины неживые
Неживые (инактивированные) вакцины
| | К таким вакцинам относятся корпускулярные бактериальные и вирусные вакцины, корпускулярные субклеточные и субъединичные вакцины, а также молекулярные вакцины. Корпускулярные вакцины представляют собой инактивированные физическими (температура, УФ-лучи, ионизирующее излучение) или химическими (формалин, фенол, р-пропиолактон) способами культуры патогенных или вакцинных штаммов бактерий и вирусов. Инактивацию проводят в оптимальном режиме (инактивирующая доза, температура, концентрация микроорганизмов), чтобы сохранить антигенные свойства микроорганизмов, но лишить их жизнеспособности. Корпускулярные вакцины, полученные из цельных бактерий, называют цельноклеточными, а из неразрушенных вирионов – цельновирионными. Инактивированные вакцины готовят в асептических условиях на основе чистых культур микроорганизмов. К готовым, дозированным (по концентрации микроорганизмов) вакцинам добавляют консервант. Вакцины могут быть в жидком (суспензии) или сухом виде. Вакцинацию выполняют 2-3 раза, вводя препарат подкожно, внутримышечно, аэрозольно, иногда перорально. Корпускулярные вакцины применяют для профилактики коклюша, гриппа, гепатита А, герпеса, клещевого энцефалита.
К корпускулярным вакцинам относят также субклеточные и субвирионные вакцины, в которых в качестве действующего начала используют антигенные комплексы, выделенные из бактерий или вирусов после их разрушения. Приготовление субклеточных и субвирионных вакцин сложнее, чем цельноклеточных и цельновирионных, однако такие вакцины содержат меньше балластных компонентов микроорганизмов.
Раньше субклеточные и субвирионные вакцины называли химическими, поскольку применяли химические методы при выделении антигенов, из которых готовили вакцину. Однако этот термин более применим к вакцинам, полученным методом химического синтеза.В настоящее время используют субклеточные инактивирован-ные вакцины против брюшного тифа (на основе О-, Н- и Vi-антигенов), дизентерии, гриппа (на основе нейраминидазы и гемагглютинина), сибирской язвы (на основе капсульного антигена) и др. Такие вакцины, как правило, применяют с добавлением адъювантов. Молекулярные вакцины. К ним относят специфические антигены в молекулярной форме, полученные методами биологического, химического синтеза, генетической инженерии. Принцип метода биосинтеза состоит в выделении из микроорганизмов или культуральной жидкости протективного антигена в молекулярной форме. Например, истинные токсины (дифтерийный, столбнячный, ботулиновый) выделяются клетками при их росте. Молекулы токсина при обезвреживании формалином превращаются в молекулы анатоксинов, сохраняющие специфические антигенные свойства, но теряющие токсичность. Следовательно, анатоксины являются типичными представителями молекулярных вакцин. Анатоксины (столбнячный, дифтерийный, ботулиновый, стафилококковый, против газовой гангрены) получают путем выращивания глубинным способом в ферментаторах возбудителей столбняка, дифтерии, ботулизма и других микроорганизмов, в результате чего в культуральной жидкости накапливаются токсины. После отделения микробных клеток сепарированием культуральную жидкость (токсин) обезвреживают формалином в концентрации 0,3.0,4 % при 37ºС в течение 3.4 нед. Обезвреженный токсин – анатоксин, потерявший токсичность, но сохранивший антигенность, подвергают очистке и концентрированию, стандартизации и фасовке. К очищенным анатоксинам добавляют консервант и адъювант. Такие анатоксины называют очищенными сорбированными. Дозируют анатоксин в антигенных единицах (ЕС – единица связывания, ЛФ – флокку-ляционная единица). Применяют анатоксины подкожно, внутримышечно; схема иммунизации состоит из 2-3 прививок с последующими ревакцинациями. Выделение протективных антигенов в молекулярной форме из самих микроорганизмов – задача довольно сложная, поэтому приготовление молекулярных вакцин этим способом не вышло за рамки эксперимента. Более продуктивным оказался метод генетической инженерии, с помощью которого получены рекомбинантные штаммы, продуцирующие антигены бактерий и вирусов в молекулярной форме. На основе таких антигенов можно создавать вакцины. Так, уже разработана и выпускается промышленностью молекулярная вакцина, содержащая антигены вируса гепатита В, продуцируемые рекомбинантными клетками дрожжей. Создана молекулярная вакцина против ВИЧ из антигенов вируса, продуцируемых рекомбинантными штаммами Е. coli.
Химический синтез молекулярных антигенов пока широко не применяется из-за своей сложности. Однако уже получены методом химического синтеза некоторые низкомолекулярные антигены [Петров Р.В., Иванов В.Т. и соавт. и др.]. Это направление, безусловно, будет развиваться.
Синтетические и полусинтетические вакцины
С целью повышения эффективности вакцин и снижения побочного действия за счет балластных веществ в настоящее время решается проблема конструирования искусственных вакцин. Основными компонентами таких вакцин являются антиген или его детерминанта в молекулярном виде, полимерный высокомолекулярный носитель для придания макромолекулярности антигену и адъювант, неспецифически повышающий активность антигена. В качестве носителя используют полиэлектролиты (винилпир-ролидон, декстран), с которыми сшивается антиген.
Ассоциированные вакцины
Для одновременной иммунизации против ряда инфекций применяют поливалентные, или ассоциированные, вакцины. Они могут включать как однородные антигены (например, анатоксины), так и антигены различной природы (корпускулярные и молекулярные, живые и убитые).
Примером ассоциированной вакцины первого типа может служить секстаанатоксин против столбняка, газовой гангрены и ботулизма, второго типа – АКДС-вакцина, в которую входят столбнячный, дифтерийный анатоксины и коклюшная корпускулярная вакцина. В живую поливалентную ассоциированную полиоми-елитную вакцину входят живые вакцинные штаммы вируса полиомиелита I, II, III типов. В ассоциированные вакцины включаются антигены в дозировках, не создающих взаимной конкуренции, чтобы иммунитет формировался ко всем входящим в вакцину антигенам.
Массовые способы вакцинации
Вакцины вводят накожным, чрескожным (подкожно и внутримышечно), интраназальным (через нос), пероральным (через рот), ингаляционным (через легкие) путями. Способ введения вакцины обусловлен характером препарата и вакцинального процесса. Накожный, интраназальный, пероральный способы более надежны для живых вакцин. Сорбированные вакцины можно вводить только чрескожными методами. Однако любой метод должен обеспечивать реализацию иммуногенных свойств вакцины и не вызывать чрезмерных поствакцинальных реакций. Большое значение имеют производительность и экономичность способа введения препарата. Это приобретает особую важность в случае необходимости быстрого охвата прививками больших масс людей в короткое время, например в период эпидемий. Применение скарификационного или шприцевого способа введения в этих ситуациях требует длительного времени и огромного числа медицинского персонала. Поэтому разработаны массовые способы иммунизации, к которым относят безыгольную инъекцию, пероральный и аэрозольный (ингаляционный) способы. Эти способы позволяют бРНГАде из 1-2 человек привить около 1000 и более человек в час. Для безыгольной инъекции применяют автоматы пистолетного типа, в которых струя жидкости (вакцины) под большим давлением проникает через кожу на заданную глубину (внут-рикожно, подкожно, внутримышечно). Для пероральной и ингаляционной иммунизации используют специально сконструированные вакцины (таблетки, конфеты-драже, жидкие и сухие препараты). Пероральные вакцины наиболее удовлетворяют требованиям, предъявляемым к массовым методам вакцинации, они менее ре-актогенны и исключают передачу «шприцевых» инфекций – ВИЧ (СПИД), вирусных гепатитов В и С, сифилиса, малярии. Широко применяют пероральную полиомиелитную вакцину; разработаны также пероральные таблетированные живые вакцины против чумы, оспы и других инфекций (А. А. Воробьев и др.).
Эффективность вакцин
Иммунизирующую способность вакцин проверяют в эксперименте на животных и эпидемическом опыте. В первом случае ее выражают коэффициентом защиты (КЗ), во втором – индексом эффективности (ИЭ). Как КЗ, так и ИЭ представляют собой отношение числа заболевших или погибших среди невакцинированных особей к числу заболевших или погибших среди вакцинированных особей при их инфицировании. Например, среди 1000 вакцинированных заболело 10 человек, а среди 1000 невакцинированных – 100 человек.
Эффективность иммунизации зависит не только от природы и качества препарата, но и от схемы его применения (величина дозы, кратность применения, интервалы времени между прививками), а также состояния реактивности прививаемых (состояние здоровья, питание, витаминная обеспеченность, климатические условия и др.).
Система вакцинации для профилактики инфекционных болезней среди населения страны регламентируется календарем прививок, в котором, начиная с рождения и до старости, определено проведение обязательных прививок и прививок по показаниям. В каждой стране существует такой календарь прививок. Поствакцинальные (нежелательные, побочные) реакции, как местные, так и общие, на введение вакцин выражаются степенью интенсивности (диаметр отека, гиперемии на месте инъекции, высота температуры). Перед выпуском каждой вакцины контролируют ее безвредность, иммуногенность и другие свойства на производстве и в контрольных лабораториях, а выборочно – в Институте стандартизации и контроля медицинских биологических препаратов им. Л.А. Тарасевича.
Эубиотики
В результате нарушений нормального биоценоза микрофлоры кишечника возникают дисбактериозы, которые лежат в основе многих болезней или сопровождают болезни (см. главу 4). Для лечения дисбактериозов применяют препараты, приготовленные из микроорганизмов, которые являются представителями нормальной микрофлоры кишечника человека. Эти препараты, предназначенные для нормализации кишечной флоры, называют эубиотиками. Наиболее часто применяют следующие эубиотики: бифидумбактерин, колибактерин, лактобактерин, субтилин, бификол. Препараты представляют собой живые высушенные культуры соответствующих микроорганизмов, обычно в таблетированной форме, с указанием числа микробных клеток в препарате. Разработаны также эубиотики в виде кисломолочных продуктов (кефир «Бифидо», «Биокефир» и др.). Учитывая, что эубиотики содержат живые микроорганизмы, они должны храниться в щадящих условиях. Назначают эубиотики перорально по 2-3 раза в день длительными курсами от 1 до 6 мес, как правило, в комбинации с другими методами лечения.
Фаги
Фаги – иммунобиологические препараты, созданные на основе вирусов бактерий. Используются для диагностики, профилактики и лечения бактериальных инфекций. Фагодиагностика применяется для идентификации и индикации бактерий, фагопрофилактика – для предупреждения эпидемических болезней (брюшной тиф, дизентерия, холера и др.), фаготерапия – для лечения инфекционных болезней, вызванных бактериями (кишечные, раневые и другие инфекции). Механизм действия фагов – лизис клеток бактерий.Фаги получают культивированием пораженных фагом бактерий и выделением из культуральной жидкости фильтрата, содержащего фаги, с последующим его высушиванием и таблетированием. Титрование фагов производят на соответствующих чувствительных к нему культурах бактерий, выращенных на плотных или жидких питательных средах. Активность фага выражают числом частиц фага, содержащихся в I мл или 1 таблетке. С профилактической и лечебной целью фаги назначают перорально или местно (орошение раневой поверхности) длительными курсами. Эффект фагопрофилактики и лечения умеренный.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте: | zdamsam.ru
Неживые (инактивированные) вакцины
ТОП 10:
|
К таким вакцинам относятся корпускулярные бактериальные и вирусные вакцины, корпускулярные субклеточные и субъединичные вакцины, а также молекулярные вакцины. Корпускулярные вакцины представляют собой инактивированные физическими (температура, УФ-лучи, ионизирующее излучение) или химическими (формалин, фенол, р-пропиолактон) способами культуры патогенных или вакцинных штаммов бактерий и вирусов. Инактивацию проводят в оптимальном режиме (инактивирующая доза, температура, концентрация микроорганизмов), чтобы сохранить антигенные свойства микроорганизмов, но лишить их жизнеспособности. Корпускулярные вакцины, полученные из цельных бактерий, называют цельноклеточными, а из неразрушенных вирионов – цельновирионными. Инактивированные вакцины готовят в асептических условиях на основе чистых культур микроорганизмов. К готовым, дозированным (по концентрации микроорганизмов) вакцинам добавляют консервант. Вакцины могут быть в жидком (суспензии) или сухом виде. Вакцинацию выполняют 2-3 раза, вводя препарат подкожно, внутримышечно, аэрозольно, иногда перорально. Корпускулярные вакцины применяют для профилактики коклюша, гриппа, гепатита А, герпеса, клещевого энцефалита.
К корпускулярным вакцинам относят также субклеточные и субвирионные вакцины, в которых в качестве действующего начала используют антигенные комплексы, выделенные из бактерий или вирусов после их разрушения. Приготовление субклеточных и субвирионных вакцин сложнее, чем цельноклеточных и цельновирионных, однако такие вакцины содержат меньше балластных компонентов микроорганизмов.
Раньше субклеточные и субвирионные вакцины называли химическими, поскольку применяли химические методы при выделении антигенов, из которых готовили вакцину. Однако этот термин более применим к вакцинам, полученным методом химического синтеза.В настоящее время используют субклеточные инактивирован-ные вакцины против брюшного тифа (на основе О-, Н- и Vi-антигенов), дизентерии, гриппа (на основе нейраминидазы и гемагглютинина), сибирской язвы (на основе капсульного антигена) и др. Такие вакцины, как правило, применяют с добавлением адъювантов. Молекулярные вакцины. К ним относят специфические антигены в молекулярной форме, полученные методами биологического, химического синтеза, генетической инженерии. Принцип метода биосинтеза состоит в выделении из микроорганизмов или культуральной жидкости протективного антигена в молекулярной форме. Например, истинные токсины (дифтерийный, столбнячный, ботулиновый) выделяются клетками при их росте. Молекулы токсина при обезвреживании формалином превращаются в молекулы анатоксинов, сохраняющие специфические антигенные свойства, но теряющие токсичность. Следовательно, анатоксины являются типичными представителями молекулярных вакцин. Анатоксины (столбнячный, дифтерийный, ботулиновый, стафилококковый, против газовой гангрены) получают путем выращивания глубинным способом в ферментаторах возбудителей столбняка, дифтерии, ботулизма и других микроорганизмов, в результате чего в культуральной жидкости накапливаются токсины. После отделения микробных клеток сепарированием культуральную жидкость (токсин) обезвреживают формалином в концентрации 0,3.0,4 % при 37ºС в течение 3.4 нед. Обезвреженный токсин – анатоксин, потерявший токсичность, но сохранивший антигенность, подвергают очистке и концентрированию, стандартизации и фасовке. К очищенным анатоксинам добавляют консервант и адъювант. Такие анатоксины называют очищенными сорбированными. Дозируют анатоксин в антигенных единицах (ЕС – единица связывания, ЛФ – флокку-ляционная единица). Применяют анатоксины подкожно, внутримышечно; схема иммунизации состоит из 2-3 прививок с последующими ревакцинациями. Выделение протективных антигенов в молекулярной форме из самих микроорганизмов – задача довольно сложная, поэтому приготовление молекулярных вакцин этим способом не вышло за рамки эксперимента. Более продуктивным оказался метод генетической инженерии, с помощью которого получены рекомбинантные штаммы, продуцирующие антигены бактерий и вирусов в молекулярной форме. На основе таких антигенов можно создавать вакцины. Так, уже разработана и выпускается промышленностью молекулярная вакцина, содержащая антигены вируса гепатита В, продуцируемые рекомбинантными клетками дрожжей. Создана молекулярная вакцина против ВИЧ из антигенов вируса, продуцируемых рекомбинантными штаммами Е. coli.
Химический синтез молекулярных антигенов пока широко не применяется из-за своей сложности. Однако уже получены методом химического синтеза некоторые низкомолекулярные антигены [Петров Р.В., Иванов В.Т. и соавт. и др.]. Это направление, безусловно, будет развиваться.
|
infopedia.su
9.17.1-2. Неживые (инактивированные) вакцины
К таким вакцинам относятся корпускулярные бактериальные и вирусные вакцины, корпускулярные субклеточные и субъединичные вакцины, а также молекулярные вакцины. Корпускулярные вакцины представляют собой инактивированные физическими (температура, УФ-лучи, ионизирующее излучение) или химическими (формалин, фенол, р-пропиолактон) способами культуры патогенных или вакцинных штаммов бактерий и вирусов. Инактивацию проводят в оптимальном режиме (инактивирующая доза, температура, концентрация микроорганизмов), чтобы сохранить антигенные свойства микроорганизмов, но лишить их жизнеспособности. Корпускулярные вакцины, полученные из цельных бактерий, называют цельноклеточными, а из неразрушенных вирионов – цельновирионными. Инактивированные вакцины готовят в асептических условиях на основе чистых культур микроорганизмов. К готовым, дозированным (по концентрации микроорганизмов) вакцинам добавляют консервант. Вакцины могут быть в жидком (суспензии) или сухом виде. Вакцинацию выполняют 2-3 раза, вводя препарат подкожно, внутримышечно, аэрозольно, иногда перорально. Корпускулярные вакцины применяют для профилактики коклюша, гриппа, гепатита А, герпеса, клещевого энцефалита.
К корпускулярным вакцинам относят также субклеточные и субвирионные вакцины, в которых в качестве действующего начала используют антигенные комплексы, выделенные из бактерий или вирусов после их разрушения. Приготовление субклеточных и субвирионных вакцин сложнее, чем цельноклеточных и цельновирионных, однако такие вакцины содержат меньше балластных компонентов микроорганизмов.
Раньше субклеточные и субвирионные вакцины называли химическими, поскольку применяли химические методы при выделении антигенов, из которых готовили вакцину. Однако этот термин более применим к вакцинам, полученным методом химического синтеза.В настоящее время используют субклеточные инактивирован-ные вакцины против брюшного тифа (на основе О-, Н- и Vi-антигенов), дизентерии, гриппа (на основе нейраминидазы и гемагглютинина), сибирской язвы (на основе капсульного антигена) и др. Такие вакцины, как правило, применяют с добавлением адъювантов. Молекулярные вакцины. К ним относят специфические антигены в молекулярной форме, полученные методами биологического, химического синтеза, генетической инженерии. Принцип метода биосинтеза состоит в выделении из микроорганизмов или культуральной жидкости протективного антигена в молекулярной форме. Например, истинные токсины (дифтерийный, столбнячный, ботулиновый) выделяются клетками при их росте. Молекулы токсина при обезвреживании формалином превращаются в молекулы анатоксинов, сохраняющие специфические антигенные свойства, но теряющие токсичность. Следовательно, анатоксины являются типичными представителями молекулярных вакцин. Анатоксины (столбнячный, дифтерийный, ботулиновый, стафилококковый, против газовой гангрены) получают путем выращивания глубинным способом в ферментаторах возбудителей столбняка, дифтерии, ботулизма и других микроорганизмов, в результате чего в культуральной жидкости накапливаются токсины. После отделения микробных клеток сепарированием культуральную жидкость (токсин) обезвреживают формалином в концентрации 0,3.0,4 % при 37ºС в течение 3.4 нед. Обезвреженный токсин – анатоксин, потерявший токсичность, но сохранивший антигенность, подвергают очистке и концентрированию, стандартизации и фасовке. К очищенным анатоксинам добавляют консервант и адъювант. Такие анатоксины называют очищенными сорбированными. Дозируют анатоксин в антигенных единицах (ЕС – единица связывания, ЛФ – флокку-ляционная единица). Применяют анатоксины подкожно, внутримышечно; схема иммунизации состоит из 2-3 прививок с последующими ревакцинациями. Выделение протективных антигенов в молекулярной форме из самих микроорганизмов – задача довольно сложная, поэтому приготовление молекулярных вакцин этим способом не вышло за рамки эксперимента. Более продуктивным оказался метод генетической инженерии, с помощью которого получены рекомбинантные штаммы, продуцирующие антигены бактерий и вирусов в молекулярной форме. На основе таких антигенов можно создавать вакцины. Так, уже разработана и выпускается промышленностью молекулярная вакцина, содержащая антигены вируса гепатита В, продуцируемые рекомбинантными клетками дрожжей. Создана молекулярная вакцина против ВИЧ из антигенов вируса, продуцируемых рекомбинантными штаммами Е. coli.
Химический синтез молекулярных антигенов пока широко не применяется из-за своей сложности. Однако уже получены методом химического синтеза некоторые низкомолекулярные антигены [Петров Р.В., Иванов В.Т. и соавт. и др.]. Это направление, безусловно, будет развиваться.
studfiles.net
Неживые (инактивированные) вакцины
К таким вакцинам относятся корпускулярные бактериальные и вирусные вакцины, корпускулярные субклеточные и субъединичные вакцины, а также молекулярные вакцины. Корпускулярные вакцины представляют собой инактивированные физическими (температура, УФ-лучи, ионизирующее излучение) или химическими (формалин, фенол, р-пропиолактон) способами культуры патогенных или вакцинных штаммов бактерий и вирусов. Инактивацию проводят в оптимальном режиме (инактивирующая доза, температура, концентрация микроорганизмов), чтобы сохранить антигенные свойства микроорганизмов, но лишить их жизнеспособности. Корпускулярные вакцины, полученные из цельных бактерий, называют цельноклеточными, а из неразрушенных вирионов – цельновирионными. Инактивированные вакцины готовят в асептических условиях на основе чистых культур микроорганизмов. К готовым, дозированным (по концентрации микроорганизмов) вакцинам добавляют консервант. Вакцины могут быть в жидком (суспензии) или сухом виде. Вакцинацию выполняют 2-3 раза, вводя препарат подкожно, внутримышечно, аэрозольно, иногда перорально. Корпускулярные вакцины применяют для профилактики коклюша, гриппа, гепатита А, герпеса, клещевого энцефалита.
К корпускулярным вакцинам относят также субклеточные и субвирионные вакцины, в которых в качестве действующего начала используют антигенные комплексы, выделенные из бактерий или вирусов после их разрушения. Приготовление субклеточных и субвирионных вакцин сложнее, чем цельноклеточных и цельновирионных, однако такие вакцины содержат меньше балластных компонентов микроорганизмов.
Раньше субклеточные и субвирионные вакцины называли химическими, поскольку применяли химические методы при выделении антигенов, из которых готовили вакцину. Однако этот термин более применим к вакцинам, полученным методом химического синтеза.В настоящее время используют субклеточные инактивирован-ные вакцины против брюшного тифа (на основе О-, Н- и Vi-антигенов), дизентерии, гриппа (на основе нейраминидазы и гемагглютинина), сибирской язвы (на основе капсульного антигена) и др. Такие вакцины, как правило, применяют с добавлением адъювантов. Молекулярные вакцины. К ним относят специфические антигены в молекулярной форме, полученные методами биологического, химического синтеза, генетической инженерии. Принцип метода биосинтеза состоит в выделении из микроорганизмов или культуральной жидкости протективного антигена в молекулярной форме. Например, истинные токсины (дифтерийный, столбнячный, ботулиновый) выделяются клетками при их росте. Молекулы токсина при обезвреживании формалином превращаются в молекулы анатоксинов, сохраняющие специфические антигенные свойства, но теряющие токсичность. Следовательно, анатоксины являются типичными представителями молекулярных вакцин. Анатоксины (столбнячный, дифтерийный, ботулиновый, стафилококковый, против газовой гангрены) получают путем выращивания глубинным способом в ферментаторах возбудителей столбняка, дифтерии, ботулизма и других микроорганизмов, в результате чего в культуральной жидкости накапливаются токсины. После отделения микробных клеток сепарированием культуральную жидкость (токсин) обезвреживают формалином в концентрации 0,3.0,4 % при 37ºС в течение 3.4 нед. Обезвреженный токсин – анатоксин, потерявший токсичность, но сохранивший антигенность, подвергают очистке и концентрированию, стандартизации и фасовке. К очищенным анатоксинам добавляют консервант и адъювант. Такие анатоксины называют очищенными сорбированными. Дозируют анатоксин в антигенных единицах (ЕС – единица связывания, ЛФ – флокку-ляционная единица). Применяют анатоксины подкожно, внутримышечно; схема иммунизации состоит из 2-3 прививок с последующими ревакцинациями. Выделение протективных антигенов в молекулярной форме из самих микроорганизмов – задача довольно сложная, поэтому приготовление молекулярных вакцин этим способом не вышло за рамки эксперимента. Более продуктивным оказался метод генетической инженерии, с помощью которого получены рекомбинантные штаммы, продуцирующие антигены бактерий и вирусов в молекулярной форме. На основе таких антигенов можно создавать вакцины. Так, уже разработана и выпускается промышленностью молекулярная вакцина, содержащая антигены вируса гепатита В, продуцируемые рекомбинантными клетками дрожжей. Создана молекулярная вакцина против ВИЧ из антигенов вируса, продуцируемых рекомбинантными штаммами Е. coli.
Химический синтез молекулярных антигенов пока широко не применяется из-за своей сложности. Однако уже получены методом химического синтеза некоторые низкомолекулярные антигены [Петров Р.В., Иванов В.Т. и соавт. и др.]. Это направление, безусловно, будет развиваться.
studlib.info