Забыли пароль?
Регистрация
О компании
Доставка
Каталог товаров  
Контакты
Задать вопрос
Как сделать заказ
Рекомендации
Партнёрам
Получить консультацию

Вакцины и вакцинация. Синтетические вакцины


  Синтетические пептидные вакцины - Med24info.com

  Синтетические пептидные вакцины — это препараты, содержащие искусственно синтезированные короткие пептиды, имитирующие небольшие участки протективных антигенов вируса, способные вызывать специфический иммунный ответ организма и защитить его от конкретного заболевания. Идентификация основных антигеных детерминант протективных антигенов многих вирусов позволила синтезировать антигенноактивные пептиды. После того, как Лернер и др., (938) показали, что небольшие пептиды могут вызывать защиту животных против вирусных болезней, появились многие работы по созданию пептидных вакцин. Заманчивость этого направления исследований состояла в том, что создание пептидных вакцин могло бы решить многие проблемы, связанные с производством и применением вакцинных препаратов. На ряде примеров была показана их способность вызывать образование специфических антител и защиту животных. Наиболее значительные исследования по созданию синтетических пептидных вакцин проведены на модели вируса ящура. Такие препараты вызывали образование ВН-антител у морских свинок и защиту у значительной части свиней и КРС при экспериментальном заражении вирулентным вирусом. Это стало возможным после того, как было установлено, что за индукцию антител, нейтрализующих вирус ящура, ответственен белок VP1 и, в частности, один доминантный нейтрализующий иммуногенный сайт (аминокислоты 141—160) и один дополнительный сайт вблизи С'-концевого участка этого полипептида. В результате, был синтезирован пептид, содержащий аминокислотные последовательности 141 —160 VP1, который был связан с гемоцианином и дополнен адъювантом Фрейнда. Вакцина вызывала образование вируснейтрализующих антител у морских свинок, свиней и крупного рогатого скота и защищала их от заболевания при заражении вирулентным штаммом вируса ящура. Однако ан- тительный ответ после иммунизации пептидным препаратом был в 10—100 раз ниже, чем после иммунизации цельными вирионами. Использование пептида в виде димера или триммера усиливало специфическую активность синтетической вакцины. Для иммунизации свиней против ящура требовалось 40 мкг синтетического пептида [399]. Синтетические пептиды, соответствующие нейтрализующим эпитопам VP-1 вируса ящура трех типов, обладали различной антигенной и иммуногенной активностью. Пептиды, обладающие специфичностью типа А и О, вызывали у морских свинок протективный иммунитет. Менее активным оказался пептид серотипа С [594]. Пептиды с аминокислотной последовательностью VP-1 всех семи типов вируса ящура вызывали образование вируснейтрализующих антител у морских свинок. Антитела имели в основном типовую специфичность. Установлена возможность приготовления двухвалентной пептидной вакцины против ящура. Для этого синтезировали два пептида различных серотипов в тандеме. Дипептидные вакцины вызывали синтез вируснейтрализующих антител к двум типам вируса ящура [834]. Синтетический пептид, соответствующий аминокислотному участку 142-158 VP-1 вируса ящура типа А, вводили морским свинкам (20 мкг), овцам (1 мг) и крупному рогатому скоту (1,5 мг) вместе с адъювантом Фрейнда. У животных отмечали высокий уровень вируснейтрализующих антител и устойчивость к заражению гомологичным вирулентным штаммом вируса ящура. Обнаружена зависимость иммунитета от афинности антител, индуцированных синтетическим пептидом [1452]. После первых успехов в получении иммуногенных пептидов вируса ящура казалось, что такая же удача последует и с пептидами других вирусов. Однако на деле этого не произошло, и эксперименты часто завершались неудачами. Так было в опытах с пептидами протективных антигенов вирусов гриппа и гепатита-В и, как ни странно, с синтетическим пептидом, представляющем главные антигенные сайты белка VP-1 полиовируса типа 1 [1131]. В последующих исследованиях имму- ногенные пептиды были получены к некоторым вирусам. Синтезирован линейный вируснейтрализующий эпитоп гликопротеина вируса бешенства, который создавал протективный иммунитет против летального бешенства у мышей [587]. Пептид, соответствующий аминокислотным остаткам 1—23 или 9—21 гико- протеина D вируса простого герпеса, конъюгированный с белком, обладал иммунизирующим эффектом для мышей, будучи включенным в липосомы, но уступал по иммуногенности постинфекционному иммунитету [700]. Обнадеживающие результаты получены в опытах с пептидной вакциной против парвовируса собак. Собаки, вакцинированные пептидными вакцинами, оказались устойчивыми к заражению вирулентным вирусом, тогда как все «контрольные» собаки погибли от парвовирусной инфекции. Аналогичные результаты получены при иммунизации норок той же вакциной с последующим заражением вирулентным вирусом энтерита норок [925]. Декапептид, гомологичный аминокислотным остаткам 993—1002 пепломерного гликопротеина Е-2 вируса гепатита мышей, конъюгированный с гемациа- нином и в смеси с адъювантом Фрейнда, в дозе 50 мкг вызывал устойчивость у мышей к заражению [1487]. Синтетический циклический пептид, соответствующий аминокислотным остаткам 139—146 сайта А гемагглютинина вируса гриппа, защищал 80% мышей от интрацеребрального заражения вирусом гриппа [1122]. Некоторые синтетические пептиды не способны вызывать иммунный ответ, но могут его значительно усилить при последующем введении живой вакцины. Проведенные исследования показали, что полученные синтетические пептиды оказались слабыми антигенами и для усиления иммунного ответа они нуждались в соединении с белком-носителем или синтетическим биополимером или в присутствии адъюванта. Лабораторные испытания синтетических пептидных вакцин в общем дали весьма скромные результаты (таблица 28). Несмотря на то, что синтетические пептиды вызывали нейтрализующие антитела против некоторых вирусов, в целом полученые результаты были разочаровывающими. Однако эти подходы заслуживают дальнейшего изучения. Их ограничения связаны с тем, что большинство эпитопов, вызывающих гумораль-
Вирус Нейтрализующие антитела Защитный эффект на лабораторных животных
гепатит мышей - +
грипп + +
полиомиелит + ни
ящур + +
лейкемия кошек + ни
простой герпес 1 + +
бешенство + +
PC инфекция - +
ВИЧ-1 + +
корь - +

+ положительный результат; — отрицательный результат; ± сомнительный результат; ни — не исследовали. ный иммунитет, являются конформационными. Эпитопы, сформированные нелинейно расположенными первичными последовательностями, образуют складчатые полипептидные цепи. Эффективные антигенные стимулы требуют чтобы в вакцине содержались трехмерные эпитопы как в нативных вирусных белковых молекулах. Так как большинство В-клеточных эпитопов не является линейными, а короткие синтетические пептиды не имеют конформационной структурной организации большинство антител против них неспособны эффективно связываться с вирусными эпитопами, потому что титр вызываемых ими нейтрализующих антител ниже индуцированных инактивированной вакциной или очищенными вирусными белками. Считается, что для иммунного ответа конформация является более важной, чем линейная последовательность аминокислот или последовательность антигенных детерминант. Циклизованные пептиды обнаружили большую иммуно- генность, чем их линейные аналоги. Кроме того известно, что один пептид не может быть достаточно эффективным для индукции резистентности, поскольку большая поверхность антигенов обычно содержит несколько индивидуальных иммунологически акитивных областей, вызывающих защитный гуморальный и клеточный ответ. Пока не удалось идентифицировать небольшие пептиды, обладающие протективным действием [1131]. При констуировании синтетических вакцин внимание, вероятно, должно быть уделено созданию гетерополимерных полипептидов, адресованных В и Т клеточным эпитопам и связанных с носителем способствующем их поглощению иммунокомпетентными клетками.

www.med24info.com

Виды вакцин | Doctor-V.ru

Виды вакцин

text_fields

text_fields

arrow_upward

В арсенале современной иммунопрофилактики насчитывается несколько десятков иммунопрофилактических средств.

В настоящее время выделяют два вида вакцин:

  1. традиционные (первого и второго поколения) и
  2. вакцины третьего поколения, сконструированные на основе методов биотехнологии.

Вакцины первого и второго поколения

text_fields

text_fields

arrow_upward

Среди вакцин первого и второго поколения различают:

  • живые,
  • инактивированные (убитые) и
  • химические вакцины.

Живые вакцины

text_fields

text_fields

arrow_upward

Для создания живых вакцин используют микроорганизмы (бактерии, вирусы, риккетсии) с ослабленной вирулентностью, возникшей в естественных условиях или искусственно в процессе селекционирования штаммов. Эффективность живой вакцины впервые была показана английским ученым Э.Дженнером (1798), предложившим для иммунизации против натуральной оспы вакцину, содержащую маловирулентный для людей возбудитель коровьей оспы, от латинского слова vасса – корова и произошло название «вакцина». В 1885 г. Л.Пастер предложил против бешенства живую вакцину из ослабленного (аттенуированного) вакцинного штамма. Французские исследователи А.Кальметт и Ш.Герен для ослабления вирулентности длительно культивировали на неблагоприятной для микроба среде туберкулезные микобактерии бычьего типа, которые и применяются для получения живой вакцины БЦЖ.

В России используются как отечественные, так и зарубежные живые аттенуированные вакцины. К ним относятся вакцины против полиомиелита, кори, эпидемического паротита, краснухи, туберкулеза, вошедшие в календарь профилактических прививок.

Применяются также вакцины против туляремии, бруцеллеза, сибирской язвы, чумы, желтой лихорадки, гриппа. Живые вакцины создают напряженный и длительный иммунитет.

Инактивированные вакцины

text_fields

text_fields

arrow_upward

Инактивированные (убитые) вакцины представляют собой препараты, приготовленные с использованием производственных штаммов возбудителей соответствующих инфекций и сохранением корпускулярной структуры микроорганизма. (Штаммы обладают полноценными антигенными свойствами.) Существуют различные методы инактивации, основными требованиями к которым являются надежность инактивации и минимальное повреждающее действие на антигены бактерий и вирусов.

Исторически первым методом инактивации считают нагревание («гретые вакцины»).

Идея «гретых вакцин» принадлежит В.Колле и Р.Пфейфферу. Инактивация микроорганизмов также достигается под действием формалина, формальдегида, фенола, феноксиэтанола, спирта и др.

В календарь прививок России включена вакцинация убитой вакциной против коклюша. В настоящее время в стране применяют (наряду с живой) инактивированную вакцину против полиомиелита.

В практике здравоохранения наряду с живыми также используют убитые вакцины против гриппа, клещевого энцефалита, брюшного тифа, паратифов, бруцеллеза, бешенства, гепатита А, менингококковой инфекции, герпетической инфекции, Ку‑лихорадки, холеры и других инфекций.

Химические вакцины

text_fields

text_fields

arrow_upward

Химические вакцины  содержат специфические антигенные компоненты, извлеченные из бактериальных клеток или токсинов различными способами (экстрагирование трихлоруксусной кислотой, гидролиз, ферментативное переваривание).

Наиболее высокий иммуногенный эффект наблюдается при введении антигенных комплексов, полученных из оболочечных структур бактерий, например Vi‑антигена возбудителей брюшного тифа и паратифов, капсульного антигена чумного микроорганизма, антигенов из оболочек возбудителей коклюша, туляремии и др.

Химические вакцины оказывают менее выраженное побочное действие, они ареактогенны, длительно сохраняют свою активность. Среди препаратов этой группы в медицинской практике используют холероген – анатоксин, высокоочищенные антигены менингококков и пневмококков.

Анатоксины

text_fields

text_fields

arrow_upward

Для создания искусственного активного иммунитета против инфекционных болезней, которые вызываются микроорганизмами, продуцирующими экзотоксин, применяют анатоксины.

Анатоксины представляют собой обезвреженные токсины, сохранившие антигенные и иммуногенные свойства. Обезвреживание токсина достигается путем воздействия формалина и длительного выдерживания в термостате при температуре 39–40 °С. Идея обезвреживания токсина формалином принадлежит Г.Рамону (1923), предложившему для иммунизации дифтерийный анатоксин. В настоящее время применяют дифтерийный, столбнячный, ботулинический и стафилококковый анатоксины.

В Японии создана и изучается бесклеточная преципитированная очищенная коклюшная вакцина. Она содержит лимфоцитозстимулирующий фактор и гемагглютинин в виде анатоксинов и обладает существенно более низкой реактогенностью и как минимум такой же эффективностью, как и корпускулярная убитая вакцина против коклюша (которая представляет собой наиболее реактогенную часть широко используемой АКДС‑вакцины).

Вакцины третьего поколения

text_fields

text_fields

arrow_upward

В настоящее время продолжается совершенствование традиционных технологий изготовления вакцин и успешно разрабатываются вакцины с учетом достижений молекулярной биологии и генной инженерии.

Стимулом к разработке и созданию вакцин третьего поколения послужили причины, обусловленные ограниченностью использования традиционных вакцин для профилактики ряда инфекционных заболеваний. Прежде всего это связано с возбудителями, которые плохо культивируются в системах in vitro и in vivo (вирусы гепатита,ВИЧ, возбудители малярии) или обладают выраженной антигенной изменчивостью (грипп).

К вакцинам третьего поколения относятся:

  1. синтетические вакцины,
  2. генно‑инженерные и
  3. антиидиотипические вакцины.

Искусственные (синтетические) вакцины

text_fields

text_fields

arrow_upward

Искусственные (синтетические) вакцины представляют собой комплекс макромолекул, несущих несколько антигенных детерминант различных микроорганизмов и способных иммунизировать против нескольких инфекций, и полимерный носитель – иммуностимулятор.

Применение синтетических полиэлектролитов в качестве иммуностимулятора позволяет существенно повысить иммуногенный эффект вакцины, в том числе и у лиц, несущих Ir‑гены низкого ответа и Is‑гены сильной супрессии, т.е. в случаях, когда традиционные вакцины неэффективны.

Генно‑инженерные вакцины

text_fields

text_fields

arrow_upward

Генно‑инженерные вакцины разрабатываются на основе антигенов, синтезированных в рекомбинантных бактериальных системах (Е. соli), дрожжах (Саndida) или вирусах (вирус осповакцины). Такого типа вакцины могут оказаться эффективными при иммунопрофилактике вирусного гепатита В, гриппа, герпетической инфекции, малярии, холеры, менингококковой инфекции, оппортунистических инфекций.

Антиидиотипические вакцины

text_fields

text_fields

arrow_upward

Принципиально новым направлением в иммунопрофилактике является разработка антиидиотипических вакцин.  Имитируя протективные антигены микроорганизмов, антиидиотипические антитела могут быть использованы в качестве вакцины против некоторых вирусных, бактериальных и паразитарных агентов, в частности против вируса иммунодефицита человека (ВИЧ).

Среди инфекций, для борьбы с которыми уже существуют вакцины или планируется применение вакцин нового поколения, прежде всего следует отметить гепатит В (вакцинация введена в соответствии с приказом МЗРФ № 226 от 08.06.96 г. в календарь прививок).

К перспективным вакцинам следует отнести вакцины против пневмококковой инфекции, малярии, ВИЧ‑инфекции, геморрагических лихорадок, острых респираторных вирусных инфекций (аденовирусная, респираторно‑синцитиальная вирусная инфекция), кишечных инфекций (ротавирусная, хеликобактериоз) и др.

Моновакцины и комбинированные вакцины

text_fields

text_fields

arrow_upward

Вакцины могут содержать антигены одного или нескольких возбудителей.Вакцины, содержащие антигены возбудителя одной инфекции, называются моновакцинами  (холерная, коревая моновакцина).

Широкое применение получили ассоциированные вакцины,  состоящие из нескольких антигенов и позволяющие вакцинировать одновременно против нескольких инфекций, ди‑  и тривакцины.  К ним относятся адсорбированная коклюшно‑дифтерийно‑столбнячная (АКДС) вакцина, тифо‑паратифозно‑столбнячная вакцина. Используется адсорбированная дифтерийностолбнячная (АДС) дивакцина, которой прививают детей после 6 лет жизни и взрослых (вместо прививки АКДС).

К живым ассоциированным вакцинам относится вакцина против кори, краснухи и паротита (ТТК). Готовится к регистрации комбинированная вакцина ТТК и против ветряной оспы.

Идеология создания комбинированных  вакцин заложена в программу Всемирной вакцинной инициативы, конечная цель которой – создание вакцины, которая могла бы защитить от 25–30 инфекций, вводилась бы однократно внутрь в самом раннем возрасте и не вызывала бы побочных явлений.

Читайте также:

Читайте также:

doctor-v.ru

Вакцины будущего. Требования к идеальной вакцине. Генно-инженерные вакцины. Синтетические пептидные вакцины

Современная вакцинология стремится к созданию идеальных вакцин Большинство существую ших вакцин не могут быть основой для создания та ких вакцин нужны принципиально новые подходы основанные на использовании знании о клеточных и молекулярных механизмах развития иммунитета точных данных о структуре антигенов и кодирующих их генов, на применении современных методов биотехнологии компьютерного анализа при подборе потенциальных эпитопов и расчете интенсивности и характера иммунного ответа [2—6]

Требования к идеальной вакцине

1 Химический состав и структура компонентов вакцин (антигенов адъювантов носителей и пр ) должны быть точно установлены

2 Вакцина должна вводиться один раз

3 Вакцина должна быть комплексной и создавать иммунитет ко многим инфекциям

4 Вакцина должна обеспечивать пожизненный иммунитет) 100% привитых

5 Вакцина должна быть безопасной и не оказывать побочное действие

6 Вакцина должна вводиться удобным для ме дицинского персонала и пациентов методом

7 Вакцина должна быть стабильной иметь дли тельный срок хранения

8 Вакцина не должна нуждаться в соблюдении хололовой цепи'

9 Технология изготовления вакцин должна от вечать современным требованиям

10 Стоимость вакцины не должна быть высокой

1 Генно-инженерные вакцины

Рекомбинантная технология совершила прорыв в создании новых вакцин Принцип создания ген но-инженерных вакцин заключается в том что в геном живых аттенуированных вирусов, бактерии дрожжей или клеток эукариотов встраивается ген кодирующий образование протективного антигена того возбудителя против которого будет направлена вакцина

В качестве вакцин используются сами модифицированные микроорганизмы или протективные антиген образующийся при их культивировании в условиях in vitro. Примером рекомбинантной вак цины состоящей из готового антигена является вакцина против гепатита В [19], а примером век торных вакцин антигены которых образуются in vivo является антирабическая вакцина Она получена на основе осповакцины и нашла широко применение в профилактике бешенства среди I ких животных с помощью приманки содержат эту вакцину |18] Эти примеры далеко не исчерпы вают возможности генно-инженернои технологии Рекомбинантные антигены удобны для получения моновакцин и для разработки сложных многоком понентных препаратов

Для создания живых вирусных вакцин используют аттенуированныи ДНК-содержащии вирус в геном которого встраивается необходимый предварительно клонированный ген Вирус, носителя вектора, активно размножается, а продукт встроенного гена обеспечивает формирование иммунни тета Вектор может содержать несколько встроенных генов, обеспечивающих экспрессию соответ ствуюших чужеродных антигенов [7 12]

Векторные вакцины на основе вируса осповакцины получены против ветряной оспы, гриппа А гепатитов А и В инфекции вызываемой синцитиальным респираторным вирусом, малярии, про стого герпеса К сожалению, вакцины испытаны преимущественно на животных, которые устойчи-вы к большинству из этих инфекции

Рекомбинантныи продукт не всегда имеет ту же структуру что и естественныи антиген Иммуно генность такого продукта может быть сниженнои Естественные вирусные антигены в клетках эукариотов подвергаются гликозилированию что по вышает иммуногенность таких антигенов В бакте риях гликозилирование отсутствует или оно происходит не так, как в клетках высших эукариотов

У низших эукариотов посттрансляционные про цессы занимают среднее положение Принципы создания бактериальных рекомбинантных вакцин аналогичны Важным этапом является клонирова-ние генов и получение мутантных генов, кодирующих иммуногенные, но не токсические формы антигена Клонированы гены для дифтерийного и столбнячного токсинов, токсина синегнойной па-лочки, сибиреязвенного, холерного, коклюшного, шигеллезного токсинов Предпринимаются попытки получить рекомбинантные вакцины против гонореи, менингококковои инфекции, малярии, коклюша [11, 15]

В качестве носителя бактериального вектора используются БЦЖ, Vibrio cholerae, Escherichia со-li, Sаlmonella typhimurium. Кишечная группа возбудителей перспективна для разработки энтеральных вакцин Живые рекомбинантные вакцины, введенные через рот, имеют короткий период жизни, но способны за этот период вызвать стойкий иммунитет Возможно создание многокомпонентных вакцин для одноименной профи тактики против нескольких диарейных инфекции Бактериальные векторные вакцины в отличие от вирусных можно контролировать с помощью антибиотиков Прошли экспериментальную проверку оральные вакцины против гепатита В и малярии

В перспективе предполагается использовать векторы, в которые встроены не только гены, контролирующие синтез протективных антигенов, но и гены, кодирующие различные медиаторы иммунного ответа Получены рекомбинантные штаммы БЦЖ, которые секретируют гама-интерферон, ин-терлейкины, гранулоцитстимулирующии фактор Предварительные исследования свидетельствуют о высокой эффективности этих штаммов в отношении туберкулеза и рака мочевого пузыря Получать эффективную векторную вакцину на основе бактерии достаточно трудно из-за нестабильности трансфекции генного материала, токсичности чужеродного антигена для бактерии, малого количества экспрессированного антигена

2. Синтетические пептидные вакцины

Идея использования синтетических пептидов в качестве вакцин родилась при изучении клеточных и молекулярных механизмов развития иммунитета прежде всего исследовании начальных этапов развития иммунитета — процессинга антигена во вспомогательных клетках и презентации антигена Т клеткам

Вирусные и бактерийные пептиды. образующиеся из персистирующих в клетках возбудителей, взаимодействуют с антигенами гистосовместимости класса 1 и индуцируют прежде всего цитоток-сические СD8-Т-клетки Экзогенные антигены, попадающие в клетку в составе лизосом, расщеп-тяются до пептидов, которые в комплексе с антигенами гистосовместимости класса II активируют СD4-Т хелперы

В 1974 г М Села впервые описал искусственно полученный пептид, вызывающий образование антител к яичному лизоциму При определенных условиях синтетические пептиды могут обладать такими же иммуногенными свойствами, как и естественные антигены, выделенные из возбудителей инфекционных заболеваний

Для получения хорошего иммунного ответа необходимо, чтобы синтетический антиген содержал не менее 8 аминокислотных остатков, хотя в структуру антигенной детерминанты могут входить 3—4 аминокислоты Минимальная молекулярная масса такой детерминанты составляет около 4000 кД

Получены многочисленные виды искусственных антигенов линейные полимеры, состоящие из L-аминокислот. разветвленные многоцепочечные сополимеры, конъюгаты различного рода пепти-дов с аминокислотными гомополимерами

Синтезированы и испытаны полисахариды, аналогичные естественным антигенам, например сальмонеллезным полисахаридам Молекула синтетических вакцин может содержать разнородные эпитопы, которые способны формировать иммунитет к разным видам инфекций

Экспериментальные синтетические вакцины получены против дифтерии, холеры, стрептококковой инфекции, гепатита В, гриппа, яшура, клещевого энцефалита, пневмококковой и сальмонеллезной инфекций

Синтетические пептиды обладают слабой им-муногенностью Для их стабилизации, доставки к иммунокомпетентным клеткам и стимуляции иммунного ответа необходим носитель или какой-ли бо другой адъювант Носитель не только помогает пептиду. он способен индуцировать ответ на себе, который не должен доминировать над ответом к пептиду и нарушать его специфичность

У синтетических пептидов нет недостатков, характерных для традиционных вакцин (реверсия патогенных свойств, остаточная вирулентность, неполная инактивация и т п ) Синтетические вакцины отличаются высокой степенью стандартности, они безопасны, обладают слабой реактоген ностью Есть все основания считать, что в будущем синтетические пептиды будут применяться в качестве вакцин

В связи с этим ВОЗ разработала специальные рекомендации по созданию

vunivere.ru

Вакцины и вакцинация | Иммунинфо

      Для профилактики инфекционных заболеваний применяются методы активной и пасивной иммунизации. Научные основы иммунопрофилактики заложены исследованиями Пастера, открывшего феномен аттенуации (ослабления) микробов и создавшего вакцины против сибирской язвы и бешенства.

       Активная иммунизация Активная иммунизация имеет цель создание стойкого и длительного иммунитета к инфекциям с тяжелым течением и плохо поддающихся лечению. Для активной иммунизации применяют вакцинные препараты.

      Вакцинация признана ВОЗ идеальным методом профилактики инфекционных заболеваний человека. Высокая эффективность, простота, возможность широкого охвата вакцинируемых лиц с целью массового предупреждения заболевания вывели активную иммунопрофилактику в нашей стране в разряд государственных приоритетов.

      В практике используют: живые вакцины, убитые вакцины, генно-инженерные вакцины (анатоксины), моно- и ассоциированные вакцины.

       Живые вакцины

      Живые вакцины готовят из аттенуированных либо генетически измененных патогенных микроорганизмов, а также близкородственных микробов, способных индуцировать невосприимчивость к патогенному виду (дивергентные вакцины). Основным достоинством живых вакцин является полное сохранение антигенного спектра возбудителя, что обеспечивает создание полноценного и напряженного иммунитета. Вместе с тем, при использовании живых вакцин может наблюдаться развитие манифестной инфекции в результате снижения аттенуации вакцинного штамма. Подобные явления наиболее характерны для противовирусных вакцин (например, живой полиомиелитной вакцины, которая в редких случаях способна вызвать полиомиелит вплоть до развития поражения спинного мозга и паралича). Из живых вакцин наиболее известны вакцины для профилактики сибирской язвы, бруцеллеза, брюшного тифа, желтой лихорадки, противополиомиелитная вакцина Сэйбина, вакцины против гриппа, кори, краснухи, паротита. Из живых дивергентных вакцин широко используется БЦЖ-вакцина (содержащая микобактерии бычьего туберкулеза) и вакцина против натуральной оспы (содержащая вирус коровьей оспы).

       Убитые(инактивированные) вакцины

      Препараты готовят из убитых микробных тел либо их метаболитов, а также из отдельных антигенов, полученных биосинтетическим или химическим путем. Неживые вакцины обычно проявляют меньшую иммуногенность, чем живые вакцины, что определяет необходимость их многократного введения. Неживые вакцины лишены балластных веществ, что значительно уменьшает частоту побочных эффектов, наблюдаемых после иммунизации живыми вакцинами.

      Для приготовления убитых вакцин вирулентные микроорганизмы убивают либо термической обработкой, либо воздействием химических агентов (например, формалина или ацетона). В приготовлении субъединичных вакцин используют главные (мажорные) антигены возбудителя, выделенные с помощью физико-химических методов.

      Среди убитых вакцин наибольшее распространение получили противочумная вакцина и антирабическая вакцина, а также вакцины (субъединичные) против пневмококков на основе полисахаридных капсул, против брюшного тифа (О-, Н- и Vi-Аг), сибирской язвы (полисахариды и полипептиды капсул), гриппа, на основе вирусной нейраминидазы и гемагглютининов.

       Генно-инженерные вакцины Эти вакцины содержат антигены возбудителей, полученные методом генной инженерии. Используют следующие приемы создания этого типа вакцин:

    — внесение генов вирулентности в авирулентные или слабовирулентные микроорганизмы;

    — внесение генов вирулентности в неродственные микроорганизмы с последующим выделением антигенов и их использованием в качестве иммуногена;

    — искусственное удаление генов вирулентности и использование модифицированных микроорганизмов в виде корпускулярных вакцин.

      Ряд современных противовирусных вакцин сконструированы путем введения генов, кодирующих основные антигены патогенных вирусов и бактерий в геном вируса осповакцины (HbsAg вируса гепатита В и АГ токсина столбнячной палочки). Другим примером служит введение генов возбудителя туберкулеза в вакцинный штамм БЦЖ, что придает ему большую активность в качестве дивергентной вакцины. В качестве метода более быстрой и дешевой наработки бактериальных экзотоксинов в настоящее время разработаны методы их получения при помощи неприхотливых микроорганизмов, в геном которых искусственно внесены гены токсинообразования (например, в виде плазмид).

       Синтетические вакцины

       Получают путем синтеза или выделения нуклеиновых кислот или полипептидных последовательностей, образующих антигенные детерминанты, индуцирующих иммунный ответ. Обязательными компонентами таких вакцин являются антиген, высокомолекулярный носитель (винилпирролидон или декстран) и адъювант (гидрооксид алюмия). Подобные препараты наиболее безопасны в плане возможных поствакцинальных осложнений. Перспективным представляется создание вакцин на основе нуклеиновых кислот для профилактики инфекций, вызываемых внутриклеточными паразитами. В эксперименте установлено, что иммунизация молекулами РНК или ДНК ряда вирусов, малярийного плазмодия, возбудителя туберкулеза приводит к формированию напряженного иммунитета.

       Молекулярные вакцины (анатоксины)

       В препаратах иммуногенами выступают молекулы токсинов (чаще экзотоксинов). Токсины получают путем промышленного культивирования естественных штаммов-продуцентов (например, возбудителя дифтерии, ботулизма, столбняка). Затем токсины инактивируют термической обработкой либо формалином, в результате чего образуются анатоксины (токсоиды), молекулы, лишенные токсических свойств, но сохранившие иммуногенность. Анатоксины очищают, концентрируют и для усиления иммуногенных свойств адсорбируют на адъюванте (обычно, гидроксиде алюминия). Промышленностью выпускаются дифтерийный, столбнячный, ботулинический, стафилококковый анатоксины.В некоторых случаях для иммунизации применяют конъюгированные вакцины, представляющие собой комплексы бактериальных полисахаридов и токсинов. Часто такое сочетание способствует усилению иммуногенности каждого из компонентов вакцины.

       Моно- и ассоциированные вакцины

       Моновалентные препараты содержат иммуногены, индуцирующие невосприимчивость организма к одному возбудителю (противостолбнячный анатоксин, вакцина против кори, краснухи, туберкулеза). Ассоциированные (поливалентные) препараты содержат иммуногены нескольких микроорганизмов. Среди поливалентных вакцин наиболее известны адсорбированная коклюшно-дифтерийно-столбнячная вакцина (АКДС-вакцина), тетравакцина (вакцина против брюшного тифа, паратифов А и В, столбнячный анатоксин) и АДС-вакцина (дифтерийно-столбнячный анатоксин).

      Вакцинные препараты вводят внутрь, подкожно, внутрикожно, парентерально, интраназально и ингаляционно. Способ введения определяется свойствами препарата. По степени необходимости выделяют плановую (обязательную) вакцинацию и вакцинацию по эпидемиологическим показаниям. Первую проводят в соответствии с календарем иммунопрофилактики наиболее распространенных и опасных инфекций. Вакцинацию по эпидемиологическим показаниям проводят для срочного создания иммунитета у лиц, подвергающихся риску развития инфекции. Например, при вспышке инфекционного заболевания в населенном пункте или предполагаемой поездке в эндемичные районы (желтая лихорадка, гепатит А).

immuninfo.ru


Смотрите также




г.Самара, ул. Димитрова 131
[email protected]