Вакцины: от Дженнера и Пастера до наших дней. Вакцина по пастеру
Луи пастер прививки год | Все о прививках
» Все о прививках
издревле сбережение физического здоровья и жизни человека становились основными задачами медицины. Человечество столетиями структурировали, обобщали, накапливали сведения о способах лечения. Для того чтобы сохранить здоровье, важно постоянно правильно питаться, заниматься спортом, следить за здоровьем, посещать врачей, отказываться от патологических действий.
Луи Пастер и его открытия. Вакцинация
4 декабря 2012, 15:42
Французский ученый, Луи Пастер, стал человеком, который совершил прорыв в медицине и иммунологии, в частности. Он первым доказал, что болезни, которые теперь называют инфекционными, могут возникать только в результате проникновения в организм из внешней среды микробов. Это гениальное открытие легло в основу принципов асептики и антисептики, дав новый виток в развитии хирургии, акушерства и вообще медицины.
Благодаря его исследованиям были не только открыты возбудители инфекционных заболеваний, но были найдены эффективные способы борьбы с ними. Так были открыты вакцины против сибирской язвы, куриной холеры, краснухи свиней.
В 1885 году Луи Пастером была разработана вакцина от бешенства – заболевания, которое в 100% случаев заканчивается смертью больного. Существует легенда, что в детстве будущий ученый увидел человека, укушенного бешеным волком. Маленького мальчика очень потрясла страшная картина прижигания места укуса раскаленным железом. Но когда Пастер все-таки создал вакцину, он долго не решался проверить эффективность антирабической вакцины на людях. В конце концов, он решил проверить действие прививки на себе. Но помог случай: к нему привезли мальчика, искусанного бешеной собакой. В любом случае ребенок бы умер, поэтому Пастер ввел противостолбнячную сыворотку ребенку. После 14 уколов мальчик выздоровел.
С этого момента слава Пастера пошла по всему миру. В разных странах начали открываться пастеровские станции, где делали прививки от бешенства, сибирской язвы и куриной холеры. В России такая станция появилась в 1886 году в Одессе и была на тот момент второй в мире по инициативе ученых И. И. Мечникова и Н. Ф. Гамалеи.
Пастеру и его последователям, также как и доктору Дженнеру, пришлось вести борьбу за признание нового способа предупреждения инфекционных болезней. Его опыты подвергали сомнениям и критиковали за научные взгляды. Его веру в свою правоту прекрасно иллюстрирует одна история, ставшая уже легендой.
Луи Пастер исследовал в своей лаборатории культуру бактерии оспы. Неожиданно к нему явился незнакомец и представился секундантом одного вельможи, которому показалось, будто ученый оскорбил его. Вельможа требовал удовлетворения. Пастер выслушал посланца и сказал: Раз меня вызывают, я имею право выбрать оружие. Вот две колбы; в одной бактерии оспы, в другой - чистая вода. Если человек, приславший вас, согласится выпить одну из них на выбор, я выпью другую . Дуэль не состоялась.
Пастер создал мировую научную школу микробиологов, многие из его учеников впоследствии стали крупнейшими учеными. Им принадлежит 8 Нобелевских премий. Именно Пастер заложил один из краеугольных принципов научного исследования, доказательность, сказав знаменитое никогда не доверяйте тому, что не подтверждено экспериментами .
В XX веке выдающимися учеными были разработаны и успешно применяются прививки против полиомиелита, гепатита, дифтерии, кори, паротита, краснухи, туберкулеза, гриппа.
Основные даты истории вакцинации
1769 — первая иммунизация против оспы, доктор Дженнер
1885 — первая иммунизация против бешенства, Луи Пастер
1891 — первая успешная серотерапия дифтерии, Эмиль фон Беринг
1913 — первая профилактическая вакцина против дифтерии, Эмиль фон Беринг
1921 — первая вакцинация против туберкулеза
1936 — первая вакцинация против столбняка
1936 — первая вакцинация против гриппа
1939 — первая вакцинация от клещевого энцефалита
1953 — первые испытания полиомиелитной инактивированной вакцины
1980 — заявление ВОЗ о полной элиминации человеческой оспы
1986 — первая генно-инженерная вакцина (HBV)
1987 — первая конъюгированная вакцина против Haemophilus influenza B
1994 — первая генно-инженерная бактериальная вакцина (ацеллюлярный коклюш)
1999 — разработка новой конъюгированной вакцины против менингококковой инфекции С
2000 — первая конъюгированная вакцина для профилактики пневмонии
Исторические сведения про бешенство
Бешенство известно человечеству с древнейших времён. В I веке до н.э. Корнелий Цельс дал болезни название, сохранившееся до наших дней, — гидрофобия, и предложил в целях лечения проводить каутеризацию (прижигание места укуса раскалённым железом).
В 1804 г. немецкий врач Г. Цинке доказал, что бешенство можно переносить от одного животного к другому путём введения в кровь или под кожу слюны бешенного животного.
Кругельштейн в 1879 г. выявил локализацию вируса бешенства в нервной ткани. Он писал: Если ядом слюны инфицировать нервной окончание, то оно, насытившись, передаст затем яд вдоль симпатических нервов спинному мозгу, а от него он достигнет головного мозга .
Разработка вакцины против бешенства стала триумфом науки и сделала Луи Пастера (Pasteur L. 1822-1895) всемирно известным человеком. Ещё при жизни ему поставили памятник в Париже.
Несколько лет у Пастера ушло на безрезультатные усилия выделить возбудитель. Потерпели неудачу и попытки размножения возбудителя бешенства в условиях in vitro. Перейдя к экспериментам in vivo, Пастеру и его сотрудниками (Э. Ру, Ш. Шамберлан, Л. Пердри) удалось к 1884 году получить фиксированный вирулентный фактор бешенства . Следующим этапом создания вакцины стал поиск приёмов, ослабляющих возбудитель бешенства. И к 1885 году вакцина против бешенства была создана и успешно предотвращала развитие заболевания у лабораторных животных.
Первые испытания антирабической вакцины на человеке произошли неожиданно: 4 июля 1885 года в лабораторию Пастера был доставлен 9-летний Жозеф Мейстер с множественными укусами бешеной собаки. Мальчик был обречён и поэтому учёный решился применить своё изобретение. Более того, после вакцинации Пастер ввёл пациенту ещё более вирулентный вирус, чем вирус бешенства уличных собак. По мнению учёного, такой приём давал возможность проверить иммунитет, вызванный вакцинацией, либо существенно ускорить смертельную агонию (если бешенство бы не удалось предотвратить). Мальчик не заболел.
Об успешном начале вакцинации людей Пастер доложил на заседании Французской академии наук и Академии медицинских наук 27 октября 1885 года. Председательствующий на заседании физиолог А. Вюльпиан тут же поставил вопрос о немедленной организации сети станций для лечения бешенства с тем, чтобы каждый человек мог воспользоваться открытием Пастера.
Первоначально Пастер был убеждён в необходимости централизовать антирабическую деятельность в едином международном центре. Поэтому в его институт во Франции стали приезжать больные из разных стран мира, в том числе и из России. Первая половина 1886 года стала самой тяжёлой для Пастера, поскольку смертность пациентов, прибывших в Париж из российских губерний, была удручающей и доходила до 82%, несмотря на интенсивный курс вакцинотерапии. Ближайшие соратники и ученики Пастера (Э. Ру, Ш. Шамберлан, Л. Пердри) прекратили своё участие в прививочной деятельности, считая, что вакцина против бешенства ещё недостаточно изучена.
Отсутствие у Пастера врачебного образования делало его при малейших неудачах объектом безжалостной критики. Кроме того, вакцина против бешенства Пастера входила в противоречие с общепринятыми в медицине идеями: врачам было непонятно, как вакцина, введённая уже после заражения, могла оказывать эффект.
Большую поддержку (нравственную и научную) Пастеру оказал в этот период молодой русский врач, командированный в Париж Обществом русских врачей, Николай Фёдорович Гамалея. Он добровольно подверг себя интенсивному курсу прививок против бешенства, тем самым подтвердив безопасность вакцины для человека.
Именно наш соотечественник обратил внимание Пастера на то, что все случаи смерти среди вакцинируемых статистически укладываются в срок после 14-го дня с момента укуса. Позднее Гамалея Н.Ф. писал: Я предположил, что предохранительные прививки могут уничтожить только яд, не дошедший к нервным центрам, и бессильны против того, который уже находится в последних .
Пастер увидел, что нельзя обойтись одним на вес мир пастеровским институтом, поэтому он согласился на открытие пастеровских станций в других странах и прежде всего способствовал учреждению Одесской (открыта в мае 1886 г.)
Как и любое новое биологическое средство, прививки против бешенства не были лишены некоторых недостатков и Пастеру самому пришлось столкнуться с поствакцинальными осложнениями. Пастер первым указал на ведущую роль самого организма человека (а не вакцины) в поствакцинальном осложнении, а также выделил ряд дополнительных неспецифических раздражителей: употребление алкоголя на фоне вакцинации, переутомление, инфекционные заболевания и др.
В 1903 г. сотрудник института Пастера в Париже П. Ремленже установил, что возбудителем бешенства является не бактерия, а фильтрующийся вирус, обладающий свойством облигатного паразита. И в этом же году учёный Негри открыл специфические тельца в цитоплазме нейронов головного мозга, которые появляются только у инфицированных бешенством животных. Данное открытие используется по сей день для посмертной диагностики бешенства.
Живая Пастеровская вакцина применялась в течение многих лет. Так, например, в СССР — до 1925 г. во Франции — до 1948 г. Сам Пастер не считал живую вакцину совершенной и в 1887 г. в Письме о бешенстве , адресованном редактору журнала Анналы Института Пастера , говорил о перспективности разработки инактивированной вакцины.
Далее в файле Бешенство
Пастер (Pasteur) Луи (1822-1895), французский ученый, основоположник современной микробиологии и иммунологии, иностранный член-корреспондент (1884) и почетный член (1893) Петербургской АН. Работы Пастера по оптической асимметрии молекул легли в основу стереохимии. Открыл природу брожения. Опроверг теорию самозарождения микроорганизмов. Изучил этиологию многих инфекционных заболеваний. Разработал метод профилактической вакцинации против куриной холеры (1879), сибирской язвы (1881), бешенства (1885). Ввел методы асептики и антисептики. В 1888 создал и возглавил научно-исследовательский институт микробиологии.
Пастер Луи
Луи Пастер родился 27 декабря 1822 года. Он был сыном отставного французского солдата, владельца небольшого кожевенного завода в местечке Доль. Пастер с успехом завершил обучение сначала в колледже в Арбуа, а затем в Безансоне. Окончив здесь курс со степенью бакалавра, он поступил в 1843 году в Высшую нормальную школу. Луи особенно увлекся химией и физикой.
Закончив школу в 1847 году, Пастер сдал экзамены на звание доцента физических наук. А спустя год защитил докторскую диссертацию. Тогда Пастер уже приобрел известность своими исследованиями в области строения кристаллов. Он открыл причину неодинакового влияния луча поляризованного света на кристаллы органических веществ.
В том же 1848 году Пастер стал адъюнкт-профессором физики в Дижоне. Через три месяца он занимает новую должность адъюнкт-профессора химии в Страсбурге. Пастер принимал активное участие в революции 1848 года.
В 1854 году его назначают деканом факультета естественных наук в Лилле. Пастер заметил, что асимметричные кристаллы встречаются в веществах, образующихся при брожении. В 1857 году Пастер доказал, что брожение - не химический процесс, как принято было тогда думать, а биологическое явление, являющеся результатом жизнедеятельности микроскопических организмов - дрожжевых грибков.
Пастер нашел, что существуют организмы, которые могут жить без кислорода. Они называются анаэробными. Представители их - микробы, вызывающие масляно-кислое брожение. Размножение таких микробов вызывает прогорклость вина и пива.
В 1857 году Пастер вернулся в Париж в качестве вице-директора Высшей нормальной школы. В 1862 году его выбрали членом института по отделению минералогии, а через несколько лет постоянным секретарем института. В 1867-1876 годах он занимал кафедру химии Парижского факультета.
В 1864 году приступил к изучению вопроса возникновения болезней вин. Результатом его исследований явилась монография, в которой Пастер показал, что болезни вина вызываются различными микроорганизмами, причем каждая болезнь имеет особого возбудителя. Для уничтожения вредных организованных ферментов он предложил прогревать вино при температуре 50-60 градусов. Этот метод, получил название пастеризации.
В 1874 году палата депутатов в признание выдающихся заслуг перед родиной назначила ему пожизненную пенсию в 12 000 франков, увеличенную в 1883 году до 26 000 франков. В 1881 году Пастер был избран в члены французской академии.
Начав с разгадки болезней вина и пива, ученый всю свою дальнейшую жизнь посвятил изучению микроорганизмов и поискам средств борьбы с возбудителями опасных заразных болезней животных и человека.
Работы Пастера обнаружили ошибочность распространенного в медицине того времени взгляда, по которому любые болезни возникают либо внутри организма, либо под влиянием испорченного воздуха ( миазмы ). Пастер показал, что болезни, которые называют заразными, могут возникать только в результате заражения, т. е. проникновения в организм из внешней среды микробов.
В 1880 году Пастер нашел способ предохранения от заразных заболеваний введением ослабленных возбудителей, который оказался применимым ко многим инфекционным болезням.
Но, прежде чем метод прививок получил полное признание, Пастеру пришлось выдержать нелегкую борьбу. Чтобы доказать правильность своего открытия, в 1881 году Пастер произвел массовый публичный опыт. Он ввел нескольким десяткам овец и коров микробы сибирской язвы. Половине подопытных животных Пастер предварительно ввел свою вакцину. На второй день все невакцинированные животные погибли от сибирской язвы, а все вакцинированные не заболели и остались живы. Этот опыт, протекавший на глазах у многочисленных свидетелей, был триумфом ученого.
Пастер разработал способ прививок против бешенства, употребляя для этого особым образом высушенный мозг зараженных бешенством кроликов. 6 июля 1885 года он впервые успешно испробовал вакцину на человеке.
В 1889 году Пастер сложил с себя все обязанности, чтобы отдаться организации и заведованию института его имени. Лондонское королевское общество присудило ему две золотых медали в 1856 и 1874 годах; Французская академия наук присудила ему премию за работу над вопросом о самозарождении.
В 1892 году торжественно праздновалась семидесятилетняя годовщина рождения ученого, а 28 сентября 1895 года Пастер скончался в Вилденеф-Летан, около Парижа.
Перепечатывается с сайтаhttp://100top.ru/encyclopedia/
Луи Пастер избавляет мир от бешенства. Его вклад в микробиологию.
Луи Пастер избавляет мир от бешенства. Его вклад в микробиологию.
В 1880 году в одном госпитале Пастер увидел девочку, которую покусала бешеная собака. Она умирала в страшных мучениях. Над ее постелью он поклялся сделать все, чтобы никто и никогда так не страдал. Он сосредоточился на такой, казалось бы, безнадежной болезни, как бешенство: каждый заболевший неизбежно погибал.
После бесчисленного множества опытов, сопровождавших поиск, возбудителя бешенства в слюне людей и животных, Пастер решил поискать таинственного микроба в крови, но эти усилия оказались бесплодными.
И вот наступил день, когда он прекратил погоню за неуловимым микробом. (Много лет спустя будет доказано, что это фильтрующийся вирус. Вот почему Пастер не мог обнаружить столь мельчайшее существо — не было в то время необходимых приборов.)
Прекратив поиск микроба, Пастер не отказался от создания вакцины против бешенства.
Мнение, что возбудитель бешенства поражает нервную систему, высказывалось давно, но это предположение не удавалось подкрепить экспериментальными данными. Наблюдая за больными животными, Пастер установил: заболевание поражает мозг. И пришел к выводу, что яд бешенства начинает проявлять себя в полную силу, лишь достигнув центральной нервной системы. Этому предшествуют недели и даже месяцы.
Значит, можно защитить человека уже после укуса! Возможность дарует сама природа — длинный инкубационный период болезни.
Идея состояла в том, чтобы посланная вслед за возбудителем бешенства вакцина обогнала, "обскакала" смертоносный яд, пока он не достигнет святая святых — центральной нервной системы. Но ослабленный яд для вакцины получить не удавалось.
Наконец-то собака, зараженная мозгом бешеного кролика, не умерла. После долгих поисков они нашли способ ослабления яда!
Чем дольше высушивали зараженный мозг, тем менее ядовитым он становился. А через четырнадцать дней оказывался абсолютно безвредным. Значит, если сделать четырнадцать последовательных прививок, постепенно усиливая действие вакцины, и на четырнадцатый раз ввести уже свежий яд, можно надеяться, что бешенство удастся предотвратить.
Специальная комиссия работала три месяца и убедилась в правоте Пастера.
По крайней мере еще год собирался Пастер проверять метод на животных, прежде чем перейти к человеку. Но судьба распорядилась иначе. К Пастеру привели девятилетнего мальчика из Эльзаса. Четырнадцать укусов, один страшнее другого! Что же делать?
У ребенка был единственный шанс на спасение — прививка. И Пастер сказал "да", хотя в случае неудачи его ждала тюрьма, а может быть, и казнь.
Имя спасенного мальчика — Жозеф Майстер, отныне станет известным: первый человек, спасенный от неминуемой гибели. Прививку сделал парижский врач Жак Жозеф Транше, потому что у Пастера врачебного диплома не было.
Следующий спасенный, пятнадцатилетний пастух Жан Батист Жюпиль, тоже вошел в историю, и во дворе Пастеровского института ему даже поставили памятник.
Защищая своих товарищей, он вступил в единоборство с бешеной собакой и вышел победителем из этой схватки. Но ему угрожала смерть, если бы не прививки... Этот человек на всю жизнь сохранил верность и признательность своему спасителю. Мальчик вырос и стал сотрудником Пастеровского института.
Когда стало ясно, что Жюпиль также спасен, Пастер решил, что можно огласить результаты.
В 1885 году в газете "Пари журналь" будет напечатано: "Пастер избавляет мир от бешенства. Он заявляет, что причина заболевания — в смертельном микробе...".
А в стенах Медицинской академии вновь и вновь раздаются голоса: "Должны ли мы позволить этому сумасшедшему прожектеру — этому Пастеру — заниматься его теориями, разрушать дело, созданное веками, и превращать в посмешище всю современную медицину?". Однако травля официальных медицинских кругов, стоившая тяжелых переживаний и отнимавшая время и силы у работы, под натиском замечательных успехов метода вскоре стихла.
Прививки против бешенства имели огромный резонанс и в кругах весьма далеких от науки. Пастеровский институт был создан на деньги, собранные по международной подписке. На торжественное открытие этого уже знаменитого учреждения съехались ученые из многих стран. Президент Французской республики, министры, посланники иностранных государств — все были здесь 14 ноября 1888 года.
Адреса, поздравления, приветствия... Рассказывают, что Пастер очень волновался: слезы блестели на его глазах. Он так и не смог произнести прочувствованную речь, которую заготовил заранее, и передал текст своему сыну.
В марте 1886 года в Париж приехало два десятка русских. Большинство из них страдали от ужасных ран, нанесенных бешеным волком. Сопровождавший этих несчастных врач подробно рассказал, как "за два дня и две ночи волк порвал и помял всех, кто ему попался на пути, и как его зарубил топором один из наиболее искусанных". Это происшествие взволновало общественность.
Многие книги обошел снимок, на котором изображены русские крестьяне, пришедшие для прививок к Пастеру. Они были спасены. А уже осенью была открыта бактериологическая станция в Одессе.
Весной 1886 года Гамалею направили в Париж в лабораторию Пастера. Гамалее удалось детально изучить этот метод прививок по Пастеру. (Немногие врачи могли этого добиться в то время.) Завоевав симпатию и доверие Пастера, он вернулся в Одессу, имея драгоценный материал — кроликов, зараженных так называемым фиксированным вирусом бешенства. 13 июня 1886 года Гамалея сделал в Одессе прививку первым 12 укушенным. За ними последовали другие.
Вот строки из письма Пастера Гамалее в Одессу: "Уважаемый доктор, поздравляю Вас... Вы спасли 29 человек: это великолепно. Кроме того, это убедительно показывает, что в Вашей местности профилактика бешенства была весьма необходима...".
Жизнь Пастера — это победоносное шествие великого экспериментатора. И непрерывная борьба за утверждение своих взглядов. На протяжении многих лет он вынужден был участвовать во многих диспутах, печатных дискуссиях. Количество его противников исчислялось десятками. Среди них были и выдающиеся ученые того времени, пользующиеся заслуженной известностью и по сей день, такие, как Р. Кох. Но приходилось полемизировать и с теми, чьи имена сохранились в истории науки лишь потому, что они были ярыми противниками основоположника современной микробиологии.
ktotak.ru
Благодетель человечества. Как Луи Пастер создавал первые прививки
В 1892 году к семидесятилетнему юбилею Луи Пастера правительство Франции выпустило медаль, по краю которой была выбита надпись: «Благодетель человечества» В поисках призвания Луи Пастер родился 18 сентября 1822 года в небольшом французском городке Дойль. Его отец, ветеран Наполеоновских войн, зарабатывал на жизнь тем, что держал небольшую кожевенную мастерскую. Глава семейства так и не окончил школу и едва умел читать и писать, однако для своего сына он хотел иного будущего. Кожевенник не пожалел денег, и после окончания школы юный Луи был отправлен в колледж, где продолжил свое образование. Говорят, более прилежного ученика было сложно найти во всей Франции. Пастер проявлял небывалое упорство, а в письмах сестрам рассуждал о том, насколько сильно успех в науках зависит от «желания и труда». Никто не удивился, когда, окончив колледж, Луи решил держать экзамен в Высшую нормальную школу в Париже. С успехом пройдя вступительные испытания, Пастер сделался студентом. Денег, которые приносила кожевенная мастерская, на образование не хватало, поэтому молодому человеку приходилось подрабатывать учителем. Но ни работа, ни увлечение живописью (Пастер получил степень бакалавра искусств, написал множество портретов, которые были высоко оценены художниками того времени) не могли отвлечь молодого человека от страсти к естественным наукам.Вакцинация мальчика, укушенного бешеной собакой. Уже в 26 лет Луи Пастер получил звание профессора физики за свои открытия в области строения кристаллов винной кислоты. Однако в процессе изучения органических веществ молодой ученый понял, что его призвание вовсе не физика, а химия и биология. В 1826 году Луи Пастер получил приглашение на работу в Страсбургском университете. Будучи в гостях у ректора Лорана, Пастер познакомился с его дочерью Мари. И уже спустя неделю после знакомства ректор получил письмо, в котором молодой профессор просил руки его дочери. Пастер видел Мари всего один раз, но был полностью уверен в своем выборе. В письме он честно сообщал отцу невесты о том, что «кроме хорошего здоровья и доброго сердца» ему нечего предложить Мари. Однако господин Лоран почему-то поверил в счастливое будущее своей дочери и дал разрешение на свадьбу. Интуиция не подвела – супруги Пастер прожили в согласии долгие годы, а в лице Мари ученый обрел не только любимую жену, но и верную помощницу.Вино и куры Одной из первых работ, принесших Пастеру известность, был труд, посвященный процессам брожения. В 1854 году Луи Пастер был назначен деканом факультета естественных наук в Университете Лилля. Там он продолжил изучение винных кислот, начатое еще в Высшей нормальной школе. Как-то раз в дом Пастера постучался богатый винопромышленник и попросил ученого помочь ему. Местные виноделы никак не могли понять, отчего портятся вино и пиво. Пастер увлеченно принялся за решение необычной задачи. Рассмотрев под микроскопом сусло, Пастер обнаружил, что в вине помимо дрожжевых грибков присутствуют еще и микроорганизмы в виде палочек. В сосудах, где присутствовали палочки, вино скисало. И если грибки отвечали за сам процесс спиртового брожения, то палочки были виновницами порчи вина и пива. Так было сделано одно из величайших открытий – Пастер объяснил не только природу брожения, но и сделал предположение о том, что микробы не зарождаются сами собой, а попадают в организм извне. Решение проблемы порчи вина Пастер начал с создания среды, чистой от бактерий. Ученый нагревал сусло до температуры 60 градусов, чтобы погибли все микроорганизмы, и уже на основе этого сусла готовили вино и пиво. Этот прием по сей день используется в промышленности и называется пастеризацией в честь своего создателя. Луи Пастер в своей лаборатории. Несмотря на то, что это открытие принесло Пастеру признание, те времена были тяжелыми для ученого – трое из пяти дочерей Пастера умерли от брюшного тифа. Эта трагедия подтолкнула профессора к изучению заразных заболеваний. Исследуя содержимое гнойников, ран и язв, Пастер открыл многие возбудители инфекции, в том числе стафилококк и стрептококк. Лаборатория Пастера в те времена напоминала цыплячью ферму – ученый выявил возбудителя куриной холеры и пытался найти способ противодействия этой болезни. Профессору помогла случайность. Культура с холерными микробами была забыта в термостате. После того как высушенный вирус был введен цыплятам, они, к удивлению ученого, не умерли, а перенесли лишь легкую форму заболевания. А когда ученый заразил их снова свежей культурой, у кур не появилось ни одного симптома холеры. Пастер понял, что введение ослабленных микробов в организм может предотвратить заражение в дальнейшем. Так родилась вакцинация. Пастер назвал свое открытие в память об ученом Эдварде Дженнере, который для предупреждения оспы вводил пациентам кровь коров, зараженных безопасной для человека формой этой болезни (слово «вакцина» происходит от латинского vacca – «корова»). После удачного эксперимента с курами Пастер разработал вакцину от сибирской язвы. Предупреждение этого заболевания у скота сэкономило правительству Франции огромные деньги. Пастеру была назначена пожизненная пенсия, он был избран во Французскую академию наук.Бешеные псы В 1881 году ученый стал свидетелем гибели пятилетней девочки, укушенной бешеной собакой. Увиденное так поразило Пастера, что он с огромным рвением приступил к созданию вакцины против этого заболевания. В отличие от большинства микроорганизмов, с которыми приходилось иметь дело ученому до этого, вирус бешенства не мог существовать сам по себе – возбудитель жил лишь в клетках мозга. Как получить ослабленную форму вируса – этот вопрос волновал ученого. Пастер дни и ночи проводил в лаборатории, заражая кроликов бешенством и препарируя затем их мозг. Он лично собирал слюну больных животных прямо из пасти.Профессор лично собирал слюну бешеных животных прямо из пасти Близкие всерьез опасались за здоровье профессора – оно и без непосильных нагрузок оставляло желать лучшего. За 13 лет до этого, когда Пастеру было всего 45, у него случился тяжелый инсульт, который превратил ученого в инвалида. Он так и не оправился после болезни – рука осталась парализованной, а нога волочилась. Но это не помешало Пастеру сделать самое великое открытие в своей жизни. Из высушенного мозга кролика он создал вакцину против бешенства. Проводить испытания на людях ученый не рисковал до тех пор, пока к нему не обратилась мать мальчика, сильно покусанного бешеной собакой. У ребенка не было шансов выжить, и тогда ученый решился ввести ему вакцину. Ребенок выздоровел. Затем благодаря вакцине Пастера удалось спасти 16 крестьян, искусанных бешеным волком. С тех пор эффективность прививок от бешенства уже не подвергалась сомнению. Пастер скончался в 1895 году в возрасте 72 лет. За свои заслуги он получил около 200 орденов. У Пастера были награды почти всех стран мира.
budtezdorovy.net
от Дженнера и Пастера до наших дней
Вакцины: от Дженнера и Пастера до наших дней
Виталий Зверев, академик РАМН, директор НИИ вакцин и сывороток им. И.И. Мечникова РАМН
Инфекционные болезни во все времена были главными врагами человека. История знает множество примеров опустошительных последствий оспы, чумы, холеры, тифа, дизентерии, кори, гриппа. Достаточно вспомнить, что упадок Древней Греции и Рима связан не столько с войнами, которые они вели, сколько с чудовищными эпидемиями чумы, уничтожившими большую часть населения. В XIV веке чума погубила треть населения Европы. Из-за эпидемии натуральной оспы через 15 лет после нашествия Кортеса от 30-миллионной империи инков осталось менее 3 млн человек. Пандемия гриппа (так называемой «испанки») в 1918–20 годах унесла жизни около 40 млн человек, а число заболевших составило около 500 млн человек. Это больше, чем потери на полях сражений Первой мировой войны, где погибли 8 млн 400 тыс. и были ранены 17 млн человек.
Величественный собор, украшающий площадь итальянского города Сиена, мог бы выглядеть еще грандиознее, если бы не эпидемия чумы. В 1339 году городские власти начали постройку нового главного нефа перпендикулярно к существующему собору. Однако «черная смерть», сократившая население города втрое, помешала осуществлению этих планов, и строительство так и не было завершено. Сам город Сиена, в то время бурно развивавшийся торгово-финансовый центр, после эпидемии уже никогда не смог достичь былого величия
В поисках средств против инфекционных заболеваний люди испробовали многое — от заклинаний и заговоров до дезинфицирующих средств и карантинных мер. Однако только с появлением вакцин началась новая эра борьбы с инфекциями. В состав вакцин входят микроорганизмы целиком (ослабленные или убитые) либо отдельные их компоненты. Они не способны вызвать заболевание и служат своеобразным учебным «муляжом». Благодаря вакцине иммунная система запоминает характерные признаки врага и при встрече с живым возбудителем немедленно узнает его и уничтожает.
Термин «вакцина» произошел от латинского слова vacca — корова. Его ввел Луи Пастер в честь английского врача Эдварда Дженнера, которого, несомненно, можно считать пионером в области вакцинопрофилактики. В 1796 году во время практики в деревне Дженнер обратил внимание, что фермеры, работающие с коровами, инфицированными коровьей оспой, не болеют натуральной оспой. Он привил коровью оспу мальчику и доказал, что тот стал невосприимчивым к натуральной оспе. Этот метод, придуманный во времена, когда еще не были открыты ни бактерии, ни вирусы, получил широкое распространение в Европе, а в дальнейшем лег в основу ликвидации оспы во всем мире. Однако лишь спустя столетие был предложен научный подход к вакцинации. Его автором стал Луи Пастер, применивший свою концепцию инфекционных возбудителей для создания вакцины против бешенства.
Разработка новых вакцин пошла полным ходом в начале XX века, когда появились методы стабильной аттенуации (ослабления) микроорганизмов, исключающие риск развития болезни, и была открыта возможность использовать для вакцинации обезвреженные бактериальные токсины.
С тех пор появилось более 100 различных вакцин, которые защищают от сорока с лишним инфекций, вызываемых бактериями, вирусами, простейшими.
Хронология создания вакцин
Классические вакцинные препараты можно разделить на три группы:
Живые вакцины. Действующим началом в них служат ослабленные микроорганизмы, потерявшие способность вызывать заболевание, но стимулирующие иммунный ответ. К этой группе относятся вакцины против кори, краснухи, полиомиелита, эпидемического паротита и гриппа.
Инактивированные вакцины. Они содержат убитые патогенные микроорганизмы или их фрагменты. Примером служат вакцины против гриппа, клещевого энцефалита, бешенства, брюшного тифа.
Анатоксины (токсоиды) — бактериальные токсины в измененной безвредной форме. К ним относятся известные и широко применяемые вакцины против дифтерии, столбняка, коклюша.
С началом бурного развития молекулярной биологии, генетики и методов генной инженерии появился новый класс вакцин — молекулярные вакцины. В них используются рекомбинантные белки или фрагменты белков патогенных микробов, синтезированные в клетках лабораторных штаммов бактерий, вирусов, дрожжей. В практику пока вошли только три таких препарата: рекомбинантная вакцина против гепатита B, вакцина против болезни Лайма и детоксицированный коклюшный токсин, который включен в состав АКДС-вакцины, применяемой в Италии.
Вакцины позволили человечеству достичь невероятных результатов в борьбе с инфекциями. В мире полностью ликвидирована натуральная оспа — заболевание, ежегодно уносившее жизни миллионов человек. Это одно из самых выдающихся событий ХХ века, которое по значимости стоит в одном ряду с полетом человека в космос. Практически исчез полиомиелит, продолжается глобальная ликвидация кори. В сотни и даже тысячи раз снижена заболеваемость дифтерией, краснухой, коклюшем, эпидемическим паротитом, вирусным гепатитом B и многими другими опасными инфекционными заболеваниями.
Несмотря на впечатляющие успехи, инфекционные болезни до сих пор остаются одной из главных причин смертности: по данным Всемирной организации здравоохранения (ВОЗ), на их долю приходится до 30% ежегодно регистрируемых смертей на планете. Наиболее опасны острые инфекции дыхательных путей, прежде всего грипп и пневмония, инфекция вирусом иммунодефицита человека, кишечные инфекции, туберкулез, вирусный гепатит B, малярия.
Согласно прогнозу экспертов ВОЗ, России и США, вспышка новых или возвращающихся инфекций может произойти в любое время и в любой точке планеты. Из природных очагов в человеческую популяцию практически ежегодно заносятся неизвестные микроорганизмы. В течение последних 30 лет мы столкнулись с 40 новыми опасными микроорганизмами, которые во многих случаях создали реальную угрозу для жизни и здоровья сотен тысяч людей. Среди них — вирус Эбола, возбудитель болезни легионеров, ВИЧ, коронавирусы и другие патогены.
Нередко на фоне эпидемиологического благополучия люди перестают делать прививки, предусмотренные национальными системами здравоохранения, и тогда инфекции, считавшиеся давно побежденными, возвращаются. В последние десятилетия эпидемии коклюша, дифтерии, полиомиелита и кори зарегистрированы в Японии, России, Азербайджане, Грузии, Таджикистане, Украине, на Гаити, в Венесуэле и Колумбии. Показателен пример с возвращением в середине 90-х годов на территорию России дифтерии, которая до этого времени встречалась лишь изредка. В результате кампании против прививок, развернутой псевдоспециалистами, дифтерией заболели более 100 тыс. человек, несколько тысяч из них умерли. И только массовая вакцинация детей позволила остановить эпидемию.
Возвращение детских инфекций после прекращения массовой вакцинации
Миграция людей и животных приводит к распространению микроорганизмов на новые территории. Массовые вспышки инфекционных заболеваний возникают даже в странах с хорошо развитой системой здравоохранения, например в США. В 1999 году в Нью-Йорке зарегистрировали случаи лихорадки Западного Нила, вирус которой переносят птицы. К 2002 году это заболевание наблюдали на территории 44 штатов. Заболели более четырех тысяч человек, из которых около трехсот умерли.
В мае 2003 года появились сообщения о заболевании, вызванном вирусом оспы обезьян. В США его разносчиками стали грызуны, которых завезли из Африки в качестве экзотических домашних животных. Болезнь не получила широкого распространения только потому, что вовремя были приняты противоэпидемические меры.
Из новых инфекций, проникших в человеческую популяцию, достаточно упомянуть вспышку так называемой атипичной пневмонии (тяжелый острый респираторный синдром) в Китае и факты заражения людей вирусом гриппа птиц (H5N1). В первом случае причиной стал измененный коронавирус, носителями которого были летучие мыши. Потребовалось около года для ликвидации заболевания. Во втором случае массовые заболевания домашней птицы привели к тому, что вирусом гриппа птиц за последние три года заразились более ста человек, половина из них умерли. К счастью, этот вирус пока не передается от человека к человеку и поэтому не вызывает эпидемий среди людей. Но ряд ученых считают, что вполне вероятен обмен генов между птичьим и человеческими вариантами вируса, в результате могут появиться новые высокопатогенные для человека варианты (см. «Наука и жизнь» № 9, 2003 г. — Ред.).
Вакцины против «неинфекционных» болезней
В начале ХХ века великий русский ученый И. И. Мечников высказал предположение о том, что соматические (то есть «телесные») болезни и злокачественные опухоли имеют инфекционную природу. «Со временем, — писал он, — вероятно, удастся открыть паразитов не только при болезнях типично инфекционного характера, но и при болезнях совершенно другого рода». Ученый предсказывал, что существуют паразиты злокачественных опухолей, а также микробы — возбудители сахарной болезни. Гипотеза И. И. Мечникова получила блестящее подтверждение.
Эпидемиологи разных стран отмечают, что в период сезонного подъема заболеваемости гриппом увеличивается число госпитализированных с сердечно-сосудистыми проблемами и нарушениями мозгового кровообращения. Одновременно возрастает и смертность от инфарктов миокарда и инсультов, иногда в десятки раз. Часто вирусная инфекция приводит к миокардитам и эндокардитам — заболеваниям, при которых поражается сердечная ткань. Когда в США начали прививать детей против паротита, то проявился и нечаянный «побочный» эффект: резко снизилась заболеваемость эндокардитом. Обследование подтвердило, что большинство больных, страдающих этим тяжелым заболеванием, приводящим к пороку сердца, в раннем детстве перенесли паротит. Не исключено, что инфекционную природу имеет атеросклероз, поскольку в атеросклеротических бляшках коронарных сосудов и аорты человека обнаружено присутствие хламидий и некоторых других микроорганизмов.
Уже доказано, что язвы желудка и двенадцатиперстной кишки, а также гастрит связаны с инфекцией. Бактерию Helicobacter pylori, открытие которой отмечено Нобелевской премией 2005 года (см. «Наука и жизнь» № 12, 2005 г. — Ред.), находят у 50% пациентов с гастритом, у 70–90% больных с язвой желудка и у 95% лиц, страдающих язвой двенадцатиперстной кишки.
Когда человек инфицирован ретровирусами, реовирусами, цитомегаловирусом и вирусом Эпштейна—Барр, происходит формирование антител, которые атакуют клетки поджелудочной железы, что может привести к развитию инсулинозависимого диабета. У 10–20% пациентов с синдромом врожденной краснухи, то есть у детей, матери которых переболели краснухой в последнем триместре беременности, также развиваются нарушения углеводного обмена. Опухоли желудка, наружных половых органов и печени во многих случаях также связаны с бактериями или вирусами.
Каким образом микроорганизмы влияют на развитие болезней, которые не считаются инфекционными? Прежде всего, орган начинает хуже выполнять свою функцию из-за того, что микробы разрушают зараженные клетки. Эксперименты с культурами клеток позволяют предположить, что по такому механизму действуют вирусы паротита, краснухи, Коксаки В.
Не исключено, что в некоторых случаях вирус только инициирует патологический процесс, а дельнейший рост опухоли происходит уже без участия микроорганизмов. Эту гипотезу предложил российский иммунолог Л. А. Зильбер при построении вирусной теории происхождения опухолей. Иногда микроорганизмы просто усиливают действие других неблагоприятных факторов, а в некоторых случаях инфекционный возбудитель запускает аутоиммунный процесс, направленный против клеток органа-мишени.
Раз многие неинфекционные болезни связаны с микробами, то появляется надежда использовать для профилактики существующие вакцины. Получены первые доказательства того, что вакцины против вируса гепатита B обладают способностью предупреждать развитие опухоли печени — гепатокарциномы. После того как на Тайване начали делать детям прививки от гепатита B, частота развития гепатокарциномы сократилась на 50%, а смертность от нее — на 70%.
Уже прошли испытания нескольких потенциальных вакцин против вируса папилломы, предотвращающих развитие злокачественных опухолей половых органов. Завершено доклиническое изучение вакцины из цельных клеток H. pylori для профилактики язвы желудка и двенадцатиперстной кишки.
В бой идет ДНК
Создавать вакцины против новых инфекций, используя старые испытанные технологии, удается не всегда. Некоторые микроорганизмы, например вирус гепатита B, практически невозможно вырастить в культуре клеток, чтобы получить инактивированную вакцину. Во многих случаях вакцины на основе убитых микробов оказываются неэффективными, а живые вакцины — слишком опасными. Большие надежды возлагались на вакцины, полученные на основе рекомбинантных белков-антигенов (именно таким способом в 1980-е годы создали вакцину, защищающую от гепатита B). Но сейчас стало очевидным, что многие рекомбинантные вакцины вызывают слабый иммунный ответ. Вероятно, причина в том, что в таких препаратах содержится «голый» белок и отсутствуют другие молекулярные структуры, часто необходимые для запуска иммунного ответа. Чтобы рекомбинантные вакцины вошли в практику, нужны вещества-усилители (адъюванты), стимулирующие антигенную активность.
За последние 10 лет сформировалось новое направление — генетическая иммунизация. Его называют также ДНК-вакцинацией, поскольку в организм вводят не белок-антиген, а нуклеиновую кислоту (ДНК или РНК), в которой закодирована информация о белке. Реальная возможность использовать эту технологию в медицине и ветеринарии появилась в середине 90-х годов прошлого века. Новый подход достаточно прост, дешев и, самое главное, универсален. Сейчас уже разработаны относительно безопасные системы, которые обеспечивают эффективную доставку нуклеиновых кислот в ткани. Нужный ген вставляют в плазмиду (кольцо из ДНК) или в безопасный вирус. Такой носитель-вектор проникает в клетку и синтезирует нужные белки. Трансформированная клетка превращается в «фабрику» по производству вакцины прямо внутри организма. Вакцинная «фабрика» способна работать длительный период — до года. ДНК-вакцинация приводит к полноценному иммунному ответу и обеспечивает высокий уровень защиты от вирусной инфекции.
ДНК-вакцинация заключается в том, чтобы ввести фрагмент ДНК, кодирующий защитные антигены и цитокины, непосредственно в мышечную ткань. «Заразность» большинства вирусов во многом определяется их структурными белками. Плазмида (кольцевая молекула ДНК) с генами таких белков, введенная в мышцу, стимулирует иммунный ответ, который препятствует развитию заболевания
Используя один и тот же плазмидный или вирусный вектор, можно создавать вакцины против различных инфекционных заболеваний, меняя только последовательность, кодирующую необходимые белки-антигены. При этом отпадает необходимость работать с опасными вирусами и бактериями, становится ненужной сложная и дорогостоящая процедура очистки белков. Препараты ДНК-вакцин не требуют специальных условий хранения и доставки, они стабильны длительное время при комнатной температуре.
Уже разработаны и испытываются ДНК-вакцины против инфекций, вызываемых вирусами гепатитов B и C, гриппа, лимфоцитарного хориоменингита, бешенства, иммунодефицита человека (ВИЧ), японского энцефалита, а также возбудителями сальмонеллеза, туберкулеза и некоторых паразитарных заболеваний (лейшманиоз, малярия). Эти инфекции крайне опасны для человечества, а попытки создать против них надежные вакцинные препараты классическими методами оказались безуспешными.
ДНК-вакцинация — одно из самых перспективных направлений в борьбе с раком. В опухоль можно вводить разные гены: те, что кодируют раковые антигены, гены цитокинов и иммуномодуляторов, гены «уничтожения» клетки. Все эти гены можно использовать одновременно, организуя массированную атаку оружием разных видов.
Однако прежде чем ДНК-вакцинация войдет в медицинскую практику, следует убедиться в безопасности таких препаратов, изучить длительность индуцируемого ими иммунитета и последствия для иммунной системы.
Вакцины «по расчету»
Бурное развитие в последнее десятилетие геномики, биоинформатики и протеомики привело к совершенно новому подходу в создании вакцин, получившему название «обратная вакцинология» (reverse vaccinology). Этот термин четко выражает суть нового технологического приема. Если раньше при создании вакцин ученые шли по нисходящей линии, от целого микроорганизма к его составляющим, то теперь предлагается противоположный путь: от генома к его продуктам. Такой подход основан на том, что большинство защитных антигенов — белковые молекулы. Обладая полными знаниями обо всех белковых компонентах любого возбудителя заболевания, можно определить, какие из них годятся в качестве потенциальных кандидатов на включение в состав вакцинного препарата, а какие — нет.
Чтобы определить нуклеотидную последовательность полного генома инфекционного микроорганизма, достаточно если не нескольких дней, то нескольких недель. Причем предварительная работа по получению «библиотек» клонов ДНК возбудителя уже давно выполняется с помощью стандартных наборов ферментов. Современные приборы для автоматического определения нуклеотидной последовательности в молекулах ДНК позволяют проводить в год до 14 млн реакций. Полная расшифровка генома и его описание со списком кодируемых белков занимают несколько месяцев.
Рекомбинантные технологии позволяют получить ослабленный вирус за более короткое время. Для этого из генома вируса «вырезают» ген, который отвечает за вирулентность (болезнетворные свойства), но не влияет на размножение и иммуногенность. Получившийся безобидный вирусный штамм используют для изготовления вакцины
Проведя компьютерный (in silico) анализ генома, исследователь получает не только список кодируемых белков, но и некоторые их характеристики, например принадлежность к определенным группам, возможная локализация внутри бактериальной клетки, связь с мембраной, антигенные свойства.
Другой подход к отбору кандидатов в вакцины — определение активности отдельных генов микроорганизмов. Для этого одновременно измеряют уровень синтеза матричной РНК всех продуктов генов, производимых в клетке. Такая технология позволяет «вычислить» гены, вовлеченные в процесс распространения инфекции.
Третий подход основан на протеомной технологии. Ее методы дают возможность детализировать количественную и качественную характеристику белков в компонентах клетки. Существуют компьютерные программы, которые по аминокислотной последовательности могут предсказать не только трехмерную структуру изучаемого белка, но и его свойства и функции.
Используя эти три метода, можно отобрать набор белков и соответствующие им гены, которые представляют интерес для создания вакцины. Как правило, в эту группу входит около 20–30% всех генов бактериального генома. Для дальнейшей проверки необходимо синтезировать и очистить отобранный антиген в количествах, необходимых для иммунизации животных. Очистку белка проводят с помощью полностью автоматизированных приборов. Используя современные технологии, лаборатория, состоящая из трех исследователей, может в течение месяца выделить и очистить более 100 белков.
Впервые принцип «обратной вакцинологии» использовали для получения вакцины против менингококков группы B. За последние годы таким способом разработаны вакцинные препараты против стрептококков Streptococcus agalactiae и S. рneumoniae, золотистого стафилококка, бактерии Porphyromonas gingivalis, вызывающей воспаление десен, провоцирующего астму микроорганизма Chlamydia pneumoniae и возбудителя тяжелой формы малярии Plasmodium falciparum.
Важно не только создать вакцину, но и найти наилучший способ ее доставки в организм. Сейчас появились так называемые мукозальные вакцины, которые вводятся через слизистые оболочки рта или носа либо через кожу. Преимущество таких препаратов в том, что вакцина поступает через входные ворота инфекции и тем самым стимулирует местный иммунитет в тех органах, которые первыми подвергаются атаке микроорганизмов.
Терапевтические вакцины
Обычные вакцины предназначены для предупреждения болезни: прививку делают здоровому человеку, чтобы заранее «вооружить» организм средствами борьбы с инфекцией (исключение — разработанная Пастером вакцина против бешенства, которую применяют после укуса бешеным животным; ее эффективность объясняется длительным инкубационным периодом этого вирусного заболевания). Но в последнее время отношение к вакцинам исключительно как к профилактическому средству изменилось. Появились терапевтические вакцины — препараты, которые индуцируют иммунный ответ у больных и тем самым способствуют выздоровлению или улучшению состояния. Такие вакцины нацелены на хронические заболевания, вызванные бактериями или вирусами (в частности, вирусами гепатитов B и C, вирусом папилломы, ВИЧ), опухоли (прежде всего меланому, рак молочной железы или прямой кишки), аллергические или аутоиммунные болезни (рассеянный склероз, диабет I типа, ревматоидный артрит).
Существующие терапевтические вакцины для лечения хронических воспалительных заболеваний, вызванных бактериями или вирусами, получают классическими методами. Такие вакцины способствуют развитию иммунитета к входящим в их состав микроорганизмам и активизируют врожденный иммунитет.
Один из традиционных методов ослабления вирусов — выращивание в животных клетках. Сначала болезнетворный вирус выделяют из культуры человеческих клеток. Выращивание вне человеческого организма само по себе ослабляет «заразность» вируса. Для некоторых заболеваний, например краснухи, такой подготовки бывает достаточно, чтобы получить вакцинный штамм. Однако в общем случае, для того чтобы получить ослабленный штамм, вирус пересаживают в среду, приготовленную из клеток животных. Благодаря мутациям вирус приспособится к новой среде обитания. Для создания вакцины ученые отбирают те разновидности вирусов-мутантов, которые плохо растут на человеческих клетках, а значит, не могут вызвать болезнь
Одна из важнейших целей разработчиков терапевтических вакцин — ВИЧ-инфекция. Уже проведена серия доклинических и клинических испытаний нескольких препаратов. Их способность вызывать развитие клеточного иммунитета у здоровых людей не вызывает сомнений. Однако убедительных данных о том, что вакцины подавляют размножение вируса у больных, пока нет.
Большие надежды в лечении нарушений иммунитета при раковых заболеваниях связаны с дендритными вакцинами. Их делают на основе дендритных клеток — особой разновидности лейкоцитов, которые занимаются поиском потенциально опасных микроорганизмов. Дендритные клетки «патрулируют», прежде всего, слизистые оболочки и кожу, то есть органы, контактирующие с внешней средой. Встретив патогенную бактерию или вирус, дендритные клетки поглощают чужака и используют его белки-антигены для того, чтобы активизировать иммунную систему на борьбу с врагом.
Схема изготовления дендритной вакцины такова: из крови больного выделяют клетки, которые дают начало дендритным клеткам, и размножают их в лабораторных условиях. Одновременно из опухоли пациента выделяют белки-антигены. Дендритные клетки некоторое время выдерживают вместе с опухолевыми антигенами, чтобы они запомнили образ врага, а затем вводят больному. Такая стимуляция иммунной системы заставляет организм активно бороться с опухолью.
Дендритные вакцины можно использовать для лечения как спонтанных опухолей, так и новообразований, ассоциированных с вирусами. Первые результаты испытания дендритных противораковых вакцин на людях (в небольших группах пациентов IV стадии заболевания) показали безвредность таких вакцин, а в ряде случаев зарегистрирован положительный клинический эффект.
У мышей дендритные вакцины помогают предупредить повторное развитие карциномы после удаления опухоли. Это позволяет надеяться, что они будут эффективны для продления безрецидивного периода онкологических больных после хирургического вмешательства.
В XX веке успехи вакцинологии определялись, прежде всего, победами над очередной опасной инфекцией. С развитием наших представлений о работе иммунной системы сфера применения вакцин постоянно расширяется. Есть надежда, что в XXI веке вакцины помогут снизить заболеваемость диабетом, миокардитом, атеросклерозом и другими «неинфекционными» болезнями. Полным ходом идет разработка препаратов для иммунопрофилактики и иммунотерапии онкологических заболеваний. В перспективе — создание средств иммунологической защиты от наркозависимости и курения, конструирование вакцин для лечения и предупреждения аллергии, аутоиммунных заболеваний.
znakka4estva.ru
Изобретение Пастером прививки от бешенства
В конце 1880 года Луи Пастер посетил госпиталь, где увидел мучения ребенка,
погибающего от бешенства. Это произвело тяжелое впечатление на ученого. Как
победить эту страшную болезнь?
Ребенок
погиб. Пастер взял его слюну, развел ее и вспрыснул кроликам под кожу; кролики
погибли. Это послужило началом длительных опытов для получения прививочного
материала.
Пастер знал, что с момента заражения бешенством до начала заболевания проходит
довольно много времени — от двух недель до многих месяцев. У ученого возникла
мысль, что человеку, искусанному бешеной собакой, надо ввести ослабленный яд
возбудителя бешенства, сохранивший свои биологические свойства. Тогда организм
человека может постепенно приспособиться к борьбе с ядом, и заболевание не
наступит.
Для этого нужно решить две задачи: во-первых, обезвредить яд, а во-вторых, этот
обезвреженный яд должен перестроить организм не долее чем за 10 дней. Ведь иначе
может начать действовать яд, проникший в организм при укусе больным животным.
А как решить эти задачи, когда сразу возникла и третья, казалось бы, совершенно
невыполнимая? Ведь никто еще не видел возбудителя бешенства под микроскопом. Это
оказалось труднее, чем готовить вакцину против сибирской язвы. Как готовить
прививку из невидимки и против невидимки?
Изучая течение болезни, Пастер и его ученики Э. Ру и Ш. Шамберлан пришли к
выводу, что микробный яд сосредоточивается в мозговой ткани. Кусочек мозга
животного, больного бешенством, размельчили, смешали со специальным раствором и
ввели кролику под кожу. Кролик заболел бешенством.
Препарат, изготовленный из мозга этого заболевшего кролика, ввели следующему.
Эта процедура повторилась 132 раза. У 133-го кролика период от введения яда до
начала заболевания сократился до шести дней, и дальше степень ядовитости мозга
оставалась постоянной. Пастер назвал препарат из зараженного мозга — «вирус
фикс» («фикс» — фиксированный, постоянный, «вирус» — яд).
Это название оказалось не совсем верным. После изобретения электронного
микроскопа, увеличивающего в десятки и сотни тысяч раз, ученые смогли увидеть
тех возбудителей болезней, которые не были видимы в обычные микроскопы. Значит,
болезнетворной способностью (вирулентностью) обладал не яд, а мельчайшим
микроорганизм. И это название, неся новое содержание, осталось.
Но продолжим про вирус бешенства. Оказалось, что если вирус фикс в течение
нескольких дней подвергать специальной обработке, то он теряет свою ядовитость.
Был получен материал для прививок, который проверили на 100 собаках. Половине из
них сделали прививки, а половину оставили для контроля. И пот в один день всем
100 собакам ввели заведомо смертельную дозу вируса бешенства. Результаты
массового эксперимента превзошли все ожидания — ни одна из вакцинированных собак
не заболела, а остальные 50 погибли.
Но все это были опыты на животных, а не на людях. Впрочем, вот как об этом
сказал сам Луи Пастер: «Как бы я ни был уверен в успехе, делая прививки собакам,
я чувствую, однако, что в тот момент, когда мне придется сделать прививку
человеку, у меня задрожит рука».
Но случай заставил ученого приступить к прививкам гораздо раньше, чем он
предполагал.
4 июля 1885 года девятилетний мальчик Иосиф Мейстер был жестоко искусан бешеной
собакой. Мать повела Иосифа к доктору, но тот сказал, что мальчик должен
погибнуть и его может спасти лишь Луи Пастер, живущий в Париже, на улице Ульм. 6
июля мать привезла мальчика к Пастеру.
Ученый пригласил своих друзей врачей, те единодушно заявили, что мальчику
суждено погибнуть. Тогда Пастер решил ввести вакцину. С каждой прививкой он
волновался все больше и больше. И вот — полный успех! Мальчик не заболел, он
играл во дворе лаборатории, а 27 июля отправился домой с подарками от «дяди
Луи».
А потом были еще успешные случаи прививок, но апофеозом успеха стал март 1886
года. Тогда к Пастеру в Париж прибыло 19 русских крестьян из Смоленска,
искусанных бешеным волком. Раньше всех их ждала неминуемая смерть. И если
учесть, что с момента нападения волка на этих людей прошло уже 12 дней, то
станет понятным волнение ученых. Прививки начались на 13-й день. Из 19 человек
16 были спасены.
Благодаря работам Пастера микробиология стала наукой, а медицина укрепила
научную основу своего развития. Он открыл тайну инфекционных болезней и
предложил метод для борьбы с ними. Его труды имели большую-теоретическую и
огромную практическую ценность.