Забыли пароль?
Регистрация
О компании
Доставка
Каталог товаров  
Контакты
Задать вопрос
Как сделать заказ
Рекомендации
Партнёрам
Получить консультацию

Противораковая «вакцина» уничтожает опухоль вместе с метастазами. Противораковая вакцина


Противораковая «вакцина» уничтожает опухоль вместе с метастазами

Если разбудить Т-лимфоциты, сидящие внутри опухоли, они не только уничтожат ее саму, но и найдут другие очаги болезни, рассеянные по организму.

Три Т-лимфоцита, окружившие раковую клетку. (Фото: NICHD / Flickr.com) Три Т-лимфоцита, окружившие раковую клетку. (Фото: NICHD / Flickr.com) Т-лимфоцит (слева) и раковая клетка. (Фото: CC MG / Flickr.com) Т-лимфоцит (слева) и раковая клетка. (Фото: CC MG / Flickr.com)

Одна из задач иммунитета – находить и уничтожать раковые клетки, но у него это по разным причинам не всегда получается: с одной стороны, иммунная система сама по себе может быть не очень активной, с другой – у раковых клеток есть множество уловок, которые позволяют им оставаться невидимыми для иммунитета. Поэтому медики и биологи активно ищут способы, чтобы «разбудить» иммунную систему и натравить ее на злокачественные клетки.

Один из таких способов – общая стимуляция иммунитета. Другой подход, более тонкий, заключается в том, чтобы подействовать именно на противораковую активность иммунной системы, то есть активировать те молекулярно-клеточные сигналы, которые настраивают иммунные клетки на  уничтожение опухоли.

Есть еще более сложные методы, например, когда у больного берут иммунные клетки, «воспитывают» их в пробирке так, чтобы они узнавали злокачественные клетки конкретной разновидности (те, которые есть у самого больного), а потом вводят обратно в организм; таким образом повышается точность и эффективность иммунного оружия.

Все эти подходы вполне успешно применяются, но у них есть и отрицательные стороны: во-первых, порой случаются неприятные побочные эффекты (слишком сильная реакция «разогретого» иммунитета может повредить здоровым тканям), во-вторых, настройка иммунной системы на врага занимает довольно много времени, да и стоят подобные методы очень недешево.

В этом смысле работа исследователей из Стэнфорда кажется без преувеличения революционной. Мы говорили, что иммунные клетки, а именно Т-лимфоциты, могут распознавать злокачественные клетки и проникать вглубь опухоли, однако опухоль их просто «усыпляет».

Рональд Леви (Ronald Levy) и его коллеги придумали, как «разбудить», то есть реактивировать Т-клетки, чтобы они вспомнили про борьбу с раком. Для этого оказалось достаточно ввести прямо в опухоль смесь двух веществ. Первое – короткие фрагменты ДНК особой структуры, в которых чередуются нуклеотиды цитозин и гуанин (генетические буквы Ц и Г). Дело в том, что такие ДНК из цитозина/гуанина, попав к иммунным клеткам, стимулируют синтез у Т-лимфоцитов поверхностных рецепторов под названием OX40. Они связывают целую группу белков, которые называются факторами некроза опухоли: когда Т-лимфоцит получает через рецептор OX40 такой сигнал, он выделяет порцию других сигнальных белков, понуждая опухолевые клетки к смерти.

Но OX40-рецепторы можно активировать не только факторами некроза опухоли, но и специально сконструированными антителами. Именно такие антитела стали вторым веществом, которое вводили в опухоль. Получалась следующее: короткие куски ДНК заставляли Т-лимфоциты синтезировать как можно больше рецепторов OX40, а антитела связывались с этими рецепторами, поддерживая Т-клетки в бодрствующем противоопухолевом состоянии.

Почему антитела и ДНК вводили прямо в опухоль? Потому что в опухоли сидели те Т-лимфоциты, которые уже знали, как выглядят опухолевые клетки, запомнили их молекулярный портрет – иначе бы они не забрались в опухоль. То есть их не нужно было учить против кого сражаться, их нужно было только «разбудить». Поэтому, строго говоря, новое лекарство нельзя назвать вакциной – настоящие вакцины помогают иммунитету выучить, как будет выглядеть будущая опасность; здесь же иммунитет уже знает, с кем бороться, просто никак не может начать борьбу.

Эксперименты ставили с мышами, которым вживляли срезу две опухоли лимфомы в разные места, имитируя вторичный очаг болезни, возникший как бы в результате метастазирования. При этом лечебную смесь вводили только в одну из них. В статье в Science Translational Medicine говорится, что исчезала не только та опухоль, куда ввели ДНК и антитела, но и вторая. То есть некоторые из проснувшихся Т-клеток покинули одну опухоль и добрались до второй. Иными словами, препарат, введенный локально, действовал глобально, в масштабе всего организма. Действовал притом весьма эффективно: из 90 мышей с опухолями у 87 опухоль исчезла после однократного применения нового средства. У оставшихся трех животных рак вернулся, но потом окончательно исчез после повторной инъекции.

Исследователи проверили свой способ и с другими видами опухолей: с меланомой, раком молочной железы и раком толстой кишки – и результаты оказались те же: активированные Т-клетки истребляли все виды рака. Наконец, в еще одном эксперименте мышам кроме двух лимфомных опухолей пересаживали опухоль толстой кишки, после чего лекарство вводили в одну из лимфом. В результате у мышей исчезали только лимфомные опухоли, а вот кишечная оставалась на месте.

Почему так происходило, вполне понятно: активированные Т-клетки, которые сидели в лимфоме, знали, как выглядит «их» опухоль, но не знали, как выглядит кишечная. То есть эффект оказался очень специфичным, и можно было не бояться, что Т-клетки превысят свои полномочия – раз уж они даже другой рак не трогают. В самом начале мы упоминали про метод, в котором иммунные клетки специально в лаборатории учат распознавать рак. Но здесь, как видим, можно добиться прицельной иммунной атаки без выяснения того, какие молекулярные особенности есть у того или иного вида опухоли и как эти особенности объяснить иммунным клеткам – иммунитет все уже для себя выяснил.

Стоит добавить, что сейчас уже идут клинические испытания нового средства с участием пятнадцати пациентов с лимфомными опухолями; если результаты будут обнадеживающими, очередь дойдет и до других видов рака. В случае сильно развившихся опухолей иммунитет их сам вряд ли сможет «съесть», и их все равно будет нужно удалять хирургическим путем.

Однако и в таких случаях средство для пробуждения иммунитета все равно пригодится: активированные еще до операции иммунные клетки, во-первых, уничтожат метастазы, которые наверняка успели разбрестись по организму, а во-вторых, они истребят те раковые клетки, которые могли остаться после операции.

www.nkj.ru

Противораковая вакцина Уильяма Коли

По данным Всемирной Организации Здравоохранения ежегодно в России выявляется около 500000 случаев онкологических болезней и около 300000 человек ежегодно умирает. А, например, в США каждый год выявляется около 1500000 случаев злокачественных новообразований и до 600000 умирает. Одним из направлений лечения онкологических заболеваний является иммунотерапия. Иммунотерапия основана на той идее, что иммунная система больного может стимулироваться рядом препаратов для борьбы избирательно с опухолевыми клетками. В настоящее время за рубежом проводятся широкие исследования возможностей иммунотерапии и уже достигнуты большие успехи как в понимании молекулярных механизмов, так и в создании инновационных препаратов для борьбы со злокачественными и доброкачественными опухолями. Действие современных иммунопрепаратов основано на механизмах молекулярной онкологии и иммунологии, и они могут использоваться либо как основное лечение, либо как добавочный препарат – адъювант. В России направление иммунотерапии развито слабо, поскольку отечественные препараты оказались в целом слабоэффективными. При этом наиболее успешные варианты зарубежных иммунопрепаратов, которые превосходят по эффективности многие химиопрепараты и являются более безопасными, в России остаются без должного внимания. Поэтому данная статья посвящена одному из эффективных иммунопрепаратов и его аналогам.Титул «Отца иммунотерапии» принадлежит Вильяму Коли (1862-1936), который открыл один из эффективных способов лечения злокачественных опухолей. В настоящее время метод Вильяма Коли не потерял актуальности и с большим успехом используется в ряде стран (Канада, США, Германия, Япония) для лечения онкологических и некоторых других болезней [6, 14]. В этом году исполняется 150 лет со дня рождения первооткрывателя.

История открытияПервое систематическое исследование, посвяшенное применению иммунотерапии при лечении злокачественных форм рака было начато в 1891 году Вильямом Б. Коли (William Bradley Coley) – хирургом-онкологом, в 1915-1933 гг. он был Главой отдела «Саркомы кости» при Мемориальном Госпитале Нью-Йорка – первой онкологической больницы в Америке. Исследования Вильяма Коли были поддержаны первым в мире грантом на изучение рака и разработку методов лечения [9, 12, 14].Вильям Брэдли Коли родился в 1862 году в семье Горация Брэдли Коли и Кларины Вэйкман Коли в маленькой деревне Саугатук, штат Коннектикут. С 1884 года он учился в колледже при Йельском Университете, где изучал греческий и латинский язык, а в 1886 году поступил в Гарвардскую медицинскую школу, которую окончил в 1888 году [9]. Затем он был зачислен в штат Нью-Йоркского Госпиталя в качестве хирурга. Одной из его первых пациенток в 1890 году была 17-летняя Элизабет Дашиэл – близкий друг Джона Рокфеллера. Элизабет обратилась к Вильяму Коли по поводу опухоли на руке, впоследствии диагностированной как саркома Юинга. Несмотря на ампутацию предплечья, Элизабет умерла от множественных метастазов через 10 недель. Такое быстрое распространение смертоносного рака глубоко потрясло Вильяма Коли. Решил приложить все силы, чтобы найти более эффективное лечение. Изучил истории болезней пациентов Нью-Йоркского Госпиталя и обнаружил удивительный случай с одним из пациентов, который семью годами ранее имел неоперабельную форму злокачественной опухоли на шее, которая полностью регрессировала, после того как пациент заболел рожей. Пациент был выписан за отсутствием каких-либо признаков болезни. Вильям Коли лично решил найти и осмотреть этого пациента, который проживал на Манхеттене. Через некоторое время Коли, наконец, разыскал пациента – немецкого эмигранта Штейна и не обнаружил у него признаков остаточного рака, т.е. Штейн полностью излечился от злокачественной опухоли шеи [14, 6]. Чудесное исцеление Штейна было яркой противоположностью быстрой смерти Элизабет и вдохновило Вильяма Коли на поиски литературных данных о других онкологических больных, которые излечились от одновременной бактериальной инфекции [14]. Среди найденных им данных, можно отметить сообщение Дайдера от 1725 года, который писал, что у пациентов больных сифилисом опухоли возникают очень редко. Сэр Джеймс Пэйдж отмечал, что некоторые виды инфекций могут вызывать регрессию (уменьшение) некоторых типов опухолей. Кроме того, Вильям Коли обнаружил в литературе более конкретные примеры. Так, в 1867 году немецкий врач Буш сообщил о случае полного излечения пациента от злокачественной опухоли, после заражения рожей. Но стрептококковую бактерию, которая вызывала рожу, идентифицировали только в 1881 году (S. pyogenes - бета-гемолитические стрептококки группы А). В 1885 году Брунс намеренно сделал инъекцию стрептококков пациенту, чтобы вызвать рожу и зарегистрировал уменьшение опухоли [14]. В целом Вильяму Коли удалось собрать 47 документальных свидетельств, указывающих на противораковые свойства данной инфекции [14].Набравшись мужества, в 1891 году Вильям Коли сделал первую инъекцию живых стрептококковых бактерий пациенту (итальянец, 30 лет) с последней стадией неоперабельной формы саркомы кости и отметил уменьшение размеров опухоли через неделю. Прививки повторялись несколько месяцев и привели к полной регрессии опухоли, в то время как здоровье пациента постепенно восстанавливалось [9]. Это побудило Вильяма сделать инъекции еще двум пациентам с обширной саркомой. И хотя опухоль начала уменьшатся, оба пациента умерли от инфекции. Поскольку живые стрептококки оказались крайне опасными, Вильям Коли решил сменить тактику и продолжил лечение неоперабельных больных, используя вакцину на основе стрептококков, которые предварительно были убиты нагреванием. Поскольку мертвые стрептококки оказались менее эффективными в лечении, чем живые бактерии, Вильям Коли решил усилить действие вакцины и включил в нее еще один вид бактерий, в настоящее время известный как Serratia marcescens. Данная смесь из убитых бактерий получила название «Токсинов Коли» или «Вакцины Коли». Теперь вакцина не вызывала рожи, но вызывала сильный иммунный ответ, сопровождающийся высокой температурой [14]. Первым человеком, которому была сделана инъекция данной вакцины в 1893 году, был пациент, прикованный к постели с неоперабельной формой саркомы, метастазировавшей на брюшную стенку, кости таза и мочевой пузырь. Под действием вакцины болезнь стала отступать, и злокачественная опухоль была полностью побеждена, а пациент прожил еще 26 лет [12].Интересен случай 43-летней женщины с неоперабельной формой обширного рака шейки матки. Поскольку хирургия помочь ей уже не могла, то ее выписали из больницы. Но сын этой женщины был доктором и решил лечить ее дома с помощью инъекций вакцины Коли. Инъекции производились два раза в неделю в течение шести месяцев, а затем дополнительно по разу в неделю в течение года. После каждой инъекции поднималась высокая температура, а опухоль постепенно уменьшалась в размере. Женщина смогла вернуться к нормальной жизни. После некоторого периода отдыха было назначено профилактическое лечение, которое продолжалось 18 месяцев. Женщина прожила еще 36 лет после постановки диагноза [12].Вскоре был обнаружен благотворный эффект высокой температуры – уменьшение болей, вызванных опухолью. При этом пациенты могли сократить или даже вовсе прекратить прием обезболивающих наркотических медикаментов. Уменьшение болей часто происходило немедленно после инъекции вакцины и предшествовало регрессии опухоли. Один из пациентов говорил, что боли всегда исчезали, сразу же после инъекции вакцины [6].Вильям Коли использовал вакцину и для пациентов в юном возрасте. Описан случай девятилетней девочки, которая уже не вставала с постели в больнице Коннектикута и не могла закрыть рот. Огромная опухоль не позволяла сомкнуть челюсти и не могла быть удала хирургическим путем. Единственным лечением была вакцина Коли. Иньекции делали два раза в неделю и после каждой отмечалась высокая температура и сильный озноб. Через два месяца опухоль полностью регрессировала и девочка смогла вернуться домой, где получала поддерживающее лечение вакциной еще в течение 5 месяцев. Впоследствии девочка выросла. Она проходила осмотр в больнице в 1953 году спустя 46 лет после болезни и была совершенно здорова и свободна от каких-либо симптомов рака [12].К 1893 году Вильям Коли испытал вакцину на 10 пациентах, большинство из которых полностью излечились. К 1916 году Коли задокументировал более 80 случаев в монографиях. К концу карьеры Вильям Коли опубликовал около 150 статей, в которых описаны истории 896 пациентов, половина из которых полностью излечилась от злокачественных опухолей [14]. Медицинские журналы, в которых Вильям Коли публиковал свои результаты, имели широкий круг читателей. В то время как часть читателей игнорировала его статьи, большое число врачей в Америке и Европе независимо решили практиковать новый метод лечения рака. Еще до наступления 1900 года, 42 врача из Европы и Северной Америки сообщали о случаях успешного лечения пациентов вакциной Коли [12].Наибольшая слава пришла к Вильяму Коли в конце 1935 года, когда он выступил с данными по пятилетней выживаемости пациентов с неоперабельными формами злокачественных опухолей на собрании Королевской Коллегии Хирургов в Англии. Это авторитетнейшее общество Англии возвело Вильяма Коли в ранг почетного члена, он был пятым американцем, удостоенным такой чести [9].Однако после смерти Вильяма Коли в 1936 году использование его вакцины постепенно сократилось, что было связано не столько с развитием химиотерапии и радиотерапии, сколько с отсутствием на тот момент общепризнанных физиологических механизмов, которые бы объяснили противоопухолевый механизм действия его вакцины. Это обстоятельство вызывало недоверие многих докторов того времени. Только в 1934 году Американская Медицинская Ассоциация постановила, что вакцина Вильяма Коли по необъяснимым причинам может иметь значение в предотвращении или уменьшении рецидивов рака и метастазах и может использоваться для лечения неоперабельных больных [9, 14].Но в конце 50-х, когда химиотерапия стала считаться противораковым лекарством будущего, вакцина Коли оказалась практически забытой. Но дочь Вильяма Коли – Хелена (1907-2001), приложила все усилия, чтобы труды отца не были утеряны. В 1953 году Хелена Коли Наутс получила грант от Нельсона Рокфеллера и основала Институт Исследования Рака в Нью-Йорке, где по сей день активно развивается направление иммунотерапии раковых опухолей [12].Следует отметить, что вакцина Коли была эффективна не только при саркоме, но и при многих других видах злокачественных образований и метастазах. Среди 896 пациентов Вильяма Коли пятилетняя выживаемость при различных видах неоперабельной карциномы составила от 34 до 73%. А у пациентов с неоперабельной формой саркомы пятилетняя выживаемость составила от 19 до 79%, то есть примерно соответствовала выживаемости при карциноме, степень варьировала в зависимости от типа опухоли [6].В 1999 году было проведено ретроспективное исследование по международным базам данных SEER (Surveillance Epidemiology End Results), сравнивавшее 10-летнюю выживаемость пациентов, подвергавшихся терапии современными методами с выживаемостью пациентов, получавших вакцину Вильяма Коли. В результате было установлено, что, несмотря на миллиарды долларов, выделяющихся на разработку инновационных методов лечения онкологических болезней, состояние пациентов после лечения современными средствами, было не лучше или даже хуже, чем состояние пациентов, получавших вакцину, открытую Вильямом Коли больше 100 лет назад [12]. При сравнении пятилетней выживаемости можно привести следующий пример. Так, среди пациентов Вильяма Коли было 33 случая рака молочной железы. Из них 13 случаев – операбельная форма. Все 13 пациентов через 5 лет после лечения были живы. Остальные 20 пациентов имели неоперабельную форму рака и их пятилетняя выживаемость составила около 65%. По данным Американского Онкологического Общества за 1989-1996 гг. пятилетняя выживаемость больных неоперабельной формой рака молочной железы составляет 20% при условии лечения с помощью современных достижении онкологии [12]. Кроме того, следует отметить тот факт, что вакцина Коли была свободна от побочных эффектов, сопровождающих химиотерапию. Таким образом, вакцина Коли была очень эффективной противораковой терапией, по степени эффективности сравнимой с современными методами.

Механизмы противораковой активностиВо времена Вильяма Коли еще не существовало знаний, которые позволили бы понять его результаты. Сам Вильям Коли считал, что при введении вакцины в организме человека начинают образовываться «токсические факторы», которые вредны для опухолевых клеток и щадящие для нормальных типов клеток. В то время как современники Вильяма Коли обсуждали достоверность полученных им результатов, его метод обозначил новую научную область в иммунологии. Новое рождение метод Вильяма Коли получил вместе с развитием иммунологии, показавшей, что его принципы были верными и некоторые виды злокачественных новообразований действительно чувствительны к усиленному иммунному ответу. В настоящее время наиболее активно изучаются биохимические особенности воздействия компонентов бета-гемолитического стрептококка группы A (S. pyogenes) с клетками иммунной системы [2, 6].Толл-подобные рецепторы (ТПР) и цитокины. При глубоком изучении иммунной системы человека было открыто семейство Толл-подобных рецепторов (в 1990-х), которые объясняют один из механизмов действия вакцины Коли. Рецепторы данного класса распознают определенные структуры микроорганизмов и активируют каскады иммунного ответа. Было обнаружено, что липотейхоевые кислоты, липополисахариды и фрагменты ДНК S. pyogenes действует на ТПР-4, ТПР-2 и ТПР-9 дендритных клеток, макрофагов и лимфоцитов, запуская выработку сложного каскада цитокинов, каждый из которых играет уникальную роль в оркестре иммунного ответа [2, 10, 18, 25].Важная роль при этом отводится выработке альфа-интерферона, который проявляет противораковую активность в отношении таких типов неоплазм как лейкемия, лимфома, миелома, саркома Капоши, меланома, ренальная карцинома, аденокарцинома, рак печени, остеосаркома и рак мочевого пузыря. Кроме того, обнаружено, что альфа-интерферон проявляет противовирусную активность при некоторых типах вирусных инфекций: гепатит B и С, японский энцефалит и энцефалит сент-луис [2, 13, 18, 10].Другим интересным цитокином в каскаде является интерлейкин-2, который относится к факторам роста Т-клеток и натуральных киллеров. Данный цитокин в настоящее время используется при опухолях практически любого типа. Кроме того интерлейкин-2 в качестве адъюванта широко применяется при терапии ВИЧ-инфекции [2, 4, 10].Фактор некроз опухолей-альфа (ФНО) определяется в тканях животных и пациентов, которым вводили вакцину на основе S. pyogenes [4, 21, 26, 27, 29]. ФНО выделялся моноцитами, как реакция на липополисахариды и липотейхоевые кислоты S.pyogenes. Оказывает цитотоксическое действие на опухолевые клетки, вызывая уменьшение размеров опухоли. При этом также вырабатывается интерлейкин-6, который стимулирует иммунный ответ и активирует выработку других цитокинов [13, 20].Дендритные клетки. Установлено, что важнейший противораковый механизм вакцины на основе S.pyogenes связан с ускорением созревания дендритных клеток [7, 23]. Активация дендритных клеток вызывается взаимодействием ТПР-9 с фрагментами ДНК S. pyogenes [22]. При этом дендроциты начинают активно вырабатывать интерлейкин-12 и гамма-интерферон, увеличивают экспрессию антигенов (CD40, CD80, CD83, CD86), молекул клеточной адгезии (ICAM-1) и индуцируют появление цитотоксических лейкоцитов со специфической противоопухолевой активностью [17, 23, 28]. Таким образом, компоненты клеток S.pyogenes активируя дендритные клетки организма человека, стимулируют специфический противораковый иммунитет.Противоопухолевый белок SAGP. Это гликопротеин, который был выделен из экстракта S.pyogenes. Секвенирован ген, кодирующий белок SAGP и определена его молекулярная масса – 140-150 кДа. Было установлено, что данный белок, действуя напрямую, угнетает митотическую активность опухолевых клеток и вызывает их апоптоз. Так же обнаружены иммуномодулирующие свойства белка SAGP [8, 30, 31].Стрептокиназа и протеолитические ферменты. Хелена Коли высказывала мнение, что один из механизмов, объясняющих противораковый эффект вакцины Коли, может быть связан со стрептокиназой. Данный фермент, вырабатывающийся S.pyogenes, при взаимодействии в крови человека с проактиватором плазминогеном, образует плазмин, который активирует систему быстрого фибринолиза и растворяет волокна фибрина в кровяных сгустках и тромбах. Установлено, что система плазмина также оказывает угнетающее действие на рост некоторых типов злокачественных опухолей [15, 32, 33]. Отмечено повышение эффективности химиотерапии в сочетании со стрептокиназой, которая увеличивает чувствительность опухоли к препаратам [1].В другой работе in vitro установлено прямое разрушающее действие протеолитических ферментов S. pyogenes на 4 типа клеток карцином человека. При этом основная противораковая активность обнаружена у экзотоксина B [3].Таким образом, можно заключить, что вакцина Коли помимо прямого действия на опухоль, приводила к мощному стимулированию неспецифического иммунитета и специфического – противоракового. Данные механизмы требуют дальнейшего изучения. В настоящее время активно разрабатываются вакцины на основе S. pyogenes. Так, в 2005 году вакцина Коли была воссоздана Канадской фармацевтической фирмой MBVax, проводятся ее испытания. Кроме того, уже давно существует аналог вакцины Коли – японский препарат пицибанил.

Современный аналог вакцины КолиБольшое развитие идеи Вильяма Коли получили в Японии, где была создана вакцина на основе непатогенного типа Streptococcus pyogenes, штамм Su (бета-гемолитический стрептококк группы A). Основные выводы, сделанные японскими группами исследователей в 1961-1980 гг., состояли в следующем. Живые бактерии S. pyogenes гораздо более эффективно вызывают регрессию различных видов злокачественных опухолей и предотвращают метастазы, чем убитые термической обработкой. Прямая противоопухолевая активность – это уникальное свойство S. pyogenes и у других грамм-позитивных и грамм-негативных бактерий не обнаружена. Высокая противораковая активность S. pyogenes не является результатом действия отдельных компонентов бактериальных клеток (клеточная стенка, ферменты и т.д.), а проявляется как суммарное либо синергетические действие всех компонентов. Отдельные компоненты S. pyogenes обладают более слабыми противоопухолевыми свойствами. Был выведен авирулентный (непатогенный) штамм Su S.pyogenes, который не отличался по своей противораковой активности от вирулентного материнского штамма [5, 24].После длительного периода доклинических и клинических испытаний в 1975 году Министерство Здравоохранения Японии утвердило использование нового препарата – ОК-432 или пицибанила, который состоял из клеток S.pyogenes штамма Su, подвергнутых специальной обработке. В ходе обработки бактерии теряют способность делится, а их токсины нейтрализуются. До настоящего времени пицибанил с наибольшим успехом используется в лечении лимфангиомы (доброкачественная опухоль) [23]. Так вероятность успешного лечения у детей лимфангиомы макрокистозного типа составляет до 100%, однокистозного типа - 90,9%, микрокистозного - 68%, что выше, чем при лечении хирургическим путем [11, 19]. Поэтому, при лечении лимфангиомы пицибанил предложен в качестве лекарства первой линии [11]. В 2003 году был основан «Фонд имени Шухэй Огиты», который оказывает помощь в приобретении препарата больным лимфангиомой во всем мире.Также пицибанил используется как адъювант при химиотерапии злокачественных образований. Пицибанил в комбинации с химиотерапией продлевает среднюю продолжительность жизни пациентов с раком желудка (послеоперационные случаи) и пациентов с ранней стадией рака легких; уменьшает плевральные энффузии и асциты у пациентов с раком двенадцатиперстной кишки и раком легких, а также при раке шеи и головы, раке щитовидной железы, которые устойчивы к другим видам лекарств. Побочными эффектами при лечении пицибанилом могут быть: температура, болевые ощущения, отек и покраснение, лейкоцитоз и тромбоцитоз [23]. Данная вакцина имеет сложный противоопухолевый механизм действия. Во-первых, действуя напрямую, угнетает синтез РНК и пролиферативную активность опухолевых клеток. Во-вторых, вакцина действует на опухоль опосредованно, запуская в организме каскады цитокинов. Среди них идентифицированы такие цитокины как интерлейкин-8, гранулоцитарный-колониестимулирующий фактор и гранулоцит-макрофаг-колониестимулирующий фактор, которые вызывают активацию гемопоэтических клеток красного костного мозга, что приводит к увеличению количества лейкоцитов и тромбоцитов. Этот же механизм ответственен за радиопротекторный эффект пицибанила и стимуляцию регенерации печени [16, 23]. Группа цитокинов (интерлейкин-2, интерлейкин-12, интерлейкин-18, гамма-интерферон) действуют на клетки иммунной системы, ускоряя созревание дендритных клеток, увеличивая активность натуральных киллеров, количество Т-хэлперов-1 и макрофагов. Некоторые из цитокинов (фактор некроза опухоли, перфорин и гамма-интерферон) действуют непосредственно на опухолевые клетки, индуцируя апоптоз или угнетая их активность [20, 21, 23].Таким образом, созданная более чем 100 лет назад противораковая вакцина Вильяма Коли и его идеи, положили начало иммунотерапии рака. И в настоящее время создаются различные варианты вакцины Коли, которые могут быть эффективными основными или адъювантными средствами в лечении онкологических болезней.

По материалам сайта www.kvadro-bioteeh.ru 

Литература1. Bobek V., Pinterova D., Kolostova K., Boubelik M., Douglas J., Teyssler P., Pavlasek J., Kovarik J. Streptokinase increases the sensitivity of colon cancer cells to chemotherapy by gemcitabine and cis-platine in vitro [Text] / V. Bobek et al. // Cancer. Lett. – 2006. – Vol.237(1). – P. 95-101.2. Decker W.K., Safdar A. Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley's legacy revisited [Text] / W.K. Decker, A. Safdar // Cytokine Growth Factor Rev. – 2009. – Vol.20(4). – P. 271-281.3. Eslami-Nejad Z., Nematollahi-Mahani S. N., Saffari F., Mollaii H., Arabzadeh S. A. M. Cell death induction by Streptococcus pyogenes in four types of malignant cell lines [Text] / Z. Eslami-Nejad et al. // Med. J. of the Islamic Repub. of Iran. – 2010. – Vol.23(4). – P. 207-217.4. Havas H.F., Axelrod R.S., Burns M.M., Murasko D., Goonewardene M. Clinical results and immunologic effects of a mixed bacterial vaccine in cancer patients [Text] / H.F. Havas et al. // Med. Oncol. Tumor Pharmacother. – 1993. – Vol.10(4). – P. 145-158.5. Higuchi Y., Kigoshi S., Shoin S. Comparative experiments with hemolytic streptococcus and its anticancer preparations (OK-431 and OK-432) for their cytolytic activity [Text] / Y. Higuchi et al. // Jpn. J. Exp. Med. – 1980. – Vol.50 (1). –P. 7-12.6. Hoption Cann S. A., van Netten J. P., van Netten. C. Dr William Coley and tumour regression: a place in history or in the future [Text] / S. A. Hoption Cann et al., // Postgrad. Med. J. – 2003. – Vol.79. – P. 672–680.7. Hovden A.-O., Karlsen M., Jonsson R., Aarstad H. J., Silke Appel Maturation of monocyte derived dendritic cells with OK432 boosts IL-12p70 secretion and conveys strong T-cell responses [Text] / A.-O. Hovden et al. // BMC Immunology. – 2011. – Vol.12. – P. 2-5.8. Kanaoka M., Fukita Y., Taya K., Kawanaka C., Negoro T., Agui H. Antitumor activity of streptococcal acid glycoprotein produced by Streptococcus pyogenes Su [Text] / M. Kanaoke et al. // Jpn. J. Cancer. Res. – 1987. – Vol.78(12). – P. 1409-1414.9. Levine D.B. The Hospital for the Ruptured and Crippled: William Bradley Coley, Third Surgeon-in-Chief 1925–1933 [Text] / D.B. Levine // HSS J. 2008 February; 4(1): 1–9.10. Linnebacher M., Maletzki C., Klier U., Klar E. Bacterial immunotherapy of gastrointestinal tumors [Text] / M. Linnebacher et al. // Langenbecks. Arch. Surg. – 2012. – Vol. 397. – P. 557–568.11. Luzzatto C., Midrio P., Tchaprassian Z., Guglielmi M. Sclerosing treatment of lymphangiomas with OK-432 [Text] / C. Luzzatto et al. // Arch. Dis. Child. – 2000. – Vol.82(4). – P. 316-318.12. MacAdam. H. Spontaneous Regression. Cancer And The Immune System, Xlibris: Philadelphia, 2003. – P. 160.13. Maletzki C., Linnebacher M., Kreikemeyer B., Emmrich J. Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model [Text] / C. Maletzki // Gut. – 2008. – Vol.57. – P. 483-491.14. McCarthy E.F. The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas [Text] / E.F. McCarthy // Iowa. Orthop. J. – 2006. – Vol. 26. – P. 154–158.15. Murthy M.S., Summaria L.J., Miller R.J., Wyse T.B., Goldschmidt R.A., Scanlon E.F. Inhibition of tumor implantation at sites of trauma by plasminogen activators [Text] / M.S. Murthy et al. // Cancer. – 1991. – Vol.68(8). – P. 1724-1730.16. Nose M., Wang B., Istukaichi H., Yukawa O., Hayata I., Yamada T., Ohyama H. Rescue of lethally irradiated mice from hematopoietic death by pre-exposure to 0.5 Gy X rays without recovery from peripheral blood cell depletion and its modification by OK-432 [Text] / M. Nose et al. // Radiat. Res. – 2001. – Vol. 156. – P. 195-204.17. Ojima T., Iwahashi M., Nakamura M., Matsuda K., Nakamori M., Ueda K., Naka T., Katsuda M., Miyazawa M., Iida T., Yamaue H. Streptococcal preparation OK-432 promotes the capacity of dendritic cells (DCs) to prime carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocyte responses induced with genetically modified DCs that express CEA [Text] / T. Ojima et al. // Int. J. Oncol. – 2008. – Vol. 32(2). – P. 459-466.18. Okamoto M., Oshikawa T., Ohe G., Nishikawa H., Furuichi S., Tano T., Moriya Y., Saito M., Sato M. Severe impairment of anti-cancer effect of lipoteichoic acid-related molecule isolated from a penicillin-killed Streptococcus pyogenes in toll-like receptor 4-deficient mice [Text] / M. Okamoto et al. // Int. Immunopharmacol. – 2001. – Vol.1(9-10). – P. 1789-1795.19. Okazaki T., Iwatani S., Yanai T., Kobayashi H., Kato Y., Marusasa T., Lane G.J., Yamataka A. Treatment of lymphangioma in children: our experience of 128 cases [Text] / T. Okazaki et al. // J. Pediatr. Surg. – 2007. – Vol.42(2). – P. 386-389.20. Olsnes C., Olofsson J., Aarstad H.J. MAPKs ERK and p38, but not JNK phosphorylation, modulate IL-6 and TNF-α secretion following OK-432 in vitro stimulation of purified human monocytes [Text] / C. Olsens et al. // Scand. J. Immunol. – 2011. – Vol.74(2). – 114-125.21. Olsnes C., Stavang H., Olofsson J., Aarstad H.J. TNF-alpha is secreted by monocytes in transit to become macrophages, but not by peripheral blood monocytes, following OK-432 (lyophilized S. pyogenes) stimulation [Text] / C. Olsnes et al. // Scand. J. Immunol. – 2007. – Vol.66(6). – P. 684-693.22. Oshikawa T., Okamoto M., Tano T., Sasai A., Kan S., Moriya Y., Ryoma Y., Saito M., Akira S., Sato M. Antitumor effect of OK-432-derived DNA: one of the active constituents of OK-432, a streptococcal immunotherapeutic agent [Text] / T. Oshikawa et al. // J. Immunother. – 2006. – Vol.29(2). – P. 143-150.23. Ryoma Y., Moriya Y., Okamoto M., Kanaya I., Saito M. And Mitsunobu Sato Biological Effect of OK-432 (Picibanil) and Possible Application to Dendritic Cell Therapy [Text] / Y. Ryom et al. // Anticancer. Research. – 2004. – Vol.24. – P. 3295-3302.24. Shoin S. Experimental anticancer studies. Part 14. Anticancer experiment with streptococcus hemolyticus in immunized animals [Text] / S.Shoin // J. Journ. Pharmacol. – 1961. – Vol. 10. – pp. 119-125.25. Tano T., Okamoto M., Kan, Nakashiro K., Shimodaira S., Yamashita N., Kawakami Y., Hamakawa H. Growth inhibition and apoptosis by an active component of OK-432, a streptococcal agent, via Toll-like receptor 4 in human head and neck cancer cell lines [Text] / T. Tano et al. // Oral. Oncology. – 2012. – Vol.12. – P. 12-18.26. Watanabe N., Niitsu Y., Yamauchi N., Neda H., Sone H., Urushizaki I., Yamamoto A., Nagamuta M., Sugawara Y. Therapeutic Effect of Ok-432 Induced Endogenous Tnf on Tumor Bearing Mice and Cancer Patients [Text] / N. Watanabe et al. // Immunopharmacology and Immunotoxicology. – 1988. – Vol.10 (1). – P. 53-65.27. Watanabe N., Sone H., Neda H., Niitsu Y., Urushizaki I. Induction of tumor necrosis factor (TNF) by OK-432 [Text] / N. Watanabe et al. // Gan. No. Rinsho. – 1984. – Vol.30(10). – P. 1290-1292.28. West E., Ruth M. Scott K., Merrick A., Lubenko A., Pawson D., Selby P., Hatfield P., Prestwich R., Fraser S., Eves D., Anthoney A., Twelves C., Beirne D., Patel P., O'Donnell D., Watt S., Waller M., Dietz A., Robinson Philip., Melcher A., Clinical Grade OK432-activated Dendritic Cells: In Vitro Characterization and Tracking During Intralymphatic Delivery [Text] / E. West et al. // Journal. of Immunotherapy. – 2009. – Vol. 32(1). – P. 66-78.29. Yamamoto A., Nagamuta M., Usami H., Sugawara Y., Watanabe N., Niitsu Y., Urushizaki I. Release of tumor necrosis factor (TNF) into mouse peritoneal fluids by OK-432, a streptococcal preparation [Text] / A. Yamamoto et al. // Immunopharmacology. – 1986. – Vol.11(2). – P. 79–86.30. Yoshida J., Ishibashi T., Nishio M. Growth-inhibitory Effect of a Streptococcal Antitumor Glycoprotein on Human Epidermoid Carcinoma A431 Cells. Involvement of Dephosphorylation of Epidermal Growth Factor Receptor [Text] / J. Yoshida et al. // Cancer. Res. – 2001. – Vol.61(16). – P. 6151-6157.31. Yoshida J., Takamura S., Nishio M. Characterization of a streptococcal antitumor glycoprotein (SAGP) [Text] / J. Yoshida et al. // Life Sciences. – 1998. – Vol.62(12). – P. 1043–1053.32. Zacharski L.R., Ornstein D.L., Gabazza E.C. D'Alessandro-Gabazza CN, Brugarolas A, Schneider J. Treatment of malignancy by activation of the plasminogen system [Text] / L.R. Zacharski et al. // Semin. Thromb. Hemost. – 2002. – Vol.28(1). – P. 5-18.33. Zacharski L.R., Sukhatme V.P. Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer? [Text] / L.R. Zacharski et al. // J. Thromb. Haemost. – 2005. – Vol.3(3). – P. 424-427.

 

interesnosti.com

Противоопухолевые вакцины - перспективное терапевтическое направление в онкологии

Ограниченные возможности лечения поздних стадий онкологических заболеваний методами хирургии, химиотерапии, лучевой и гормональной терапии делают актуальными поиск и разработку других способов сохранения жизни таких больных. В частности, большие надежды связывают с развитием методов иммунотерапии, из которых наиболее перспективно создание противоопухолевых вакцин. Еще Пауль Эрлих, один из родоначальников современной медицины, видел в них ключ к решению проблем злокачественных новообразований. С тех пор прошло более ста лет, достигнут колоссальный прогресс в понимании природы и механизмов развития злокачественных новообразований, но и сегодня создание эффективных противоопухолевых вакцин полностью сохраняет свое значение и актуальность. Это подтвердил Всемирный конгресс онкологов, состоявшийся в Рио-де-Жанейро в 1998 году, на котором создание вакцин было выделено как одно из трех наиболее перспективных направлений в онкологии (наряду с разработкой технологий для создания моноклональных противоопухолевых антител и фактором питания в профилактике онкологических заболеваний).

Закономерности злокачественного роста

Принцип действия противоопухолевых вакцин основывается на усилении противоопухолевой защиты, заложенной в природе иммунитета здорового человека. Почему иммунная система не справляется со злокачественно трансформированными клетками и нуждается в помощи извне? Проблема заключается в природе самой опухоли и закономерностях злокачественного роста.

Во-первых, опухоль происходит из тканей организма и ее отличие (степень чужеродности) от здоровых клеток не столь значительно, чтобы вызвать выраженный иммунный ответ. Опухольассоциированные антигены (ОАА) обладают слабой иммуногенностью в отличие от антигенов бактерий или вирусов, обнаруживающих более выраженные различия, то есть более сильные антигенные свойства, которые используются при создании эффективных (антибактериальных, противовирусных) вакцин.

Во-вторых, в формирующейся опухоли действует механизм отбора клеток, способных наиболее эффективно противодействовать системе иммунного надзора, что поддерживает выживание злокачественно трансформированных клеток и таким образом содействует формированию их клона.

В-третьих, растущая опухоль угнетающе влияет на иммунитет и оказывает общее токсическое действие на организм больного.

В-четвертых, добавляется иммунодепрессивный эффект противоопухолевой химиотерапии и облучения.

Перечисленные факторы обусловливают недостаточность противоопухолевого иммунитета, а именно: ускользание злокачественных клеток от иммунного надзора и повышение их устойчивости к действию механизмов иммунитета по мере увеличения массы опухоли. Как показывают расчеты, при количестве опухолевых клеток на уровне 109 иммунологические защитные механизмы оказываются неэффективными. Между тем, это количество клеток является близким к минимуму необходимому для проявления первых симптомов новообразования. При массе клеток 10’ опухоль клинически себя не обнаруживает, хотя и доступна для диагностики с помощью определения соответствующих маркеров — ракового эмбрионального антигена, СА-125 (при раке яичников) и других. Понимание этих закономерностей позволяет сделать важный вывод о том, что использовать иммунотерапию необходимо на ранних стадиях процесса, пока опухоль слабо вооружена собственными факторами защиты, или после максимального уменьшения опухолевой массы (выполнения так называемых циторедуктивных операций), как метод противорецидивного и антиметастатического лечения, когда прогноз болезни зависит от эффективного подавления уцелевших злокачественных клеток. Отсюда следует логичное заключение о возможностях и перспективах применения противоопухолевых вакцин.

Противоопухолевые вакцины и их место в общей стратегии лечения онкопатологии

Сегодня разработаны методы получения противоопухолевых вакцин и определено их место в общей стратегии профилактики и лечения онкопатологии. Дальнейшие задачи состоят в том, чтобы повысить их эффективность, сделать доступными для онкологических больных, включить в повседневную лечебную практику.

Противоопухолевые вакцины содержат ОАА, которые стимулируют образование цитотоксических антител и активацию цитотоксических лимфоцитов (ЦТЛ), направленных против опухоли. Иммуногенные ОАА могут быть ассоциированы с целыми или лизированными опухолевыми клетками, а также получены из них в частично или полностью очищенном виде.

За последнее десятилетие открыто множество ОАА человека, распознаваемых ЦТЛ. Применение генетических и биохимических подходов позволило идентифицировать три класса таких антигенов, большую часть которых составляют пептиды, презентируемые Т-клеткам HLA-молекулами. Первый класс включает ОАА, которые экспрессируются клетками опухолей различных гистологических типов, но отсутствуют в клетках нормальных тканей (за исключением семенников). Второй класс — антигены, специфичные исключительно для меланомы и нормальных меланоцитов, например тирозиназа, gp 100, gp 75. Третий класс — антигены, возникающие в результате уникальных точечных мутаций в генах, экспрессирующиеся в различных тканях. Кроме того, обнаружены опухолевые антигены немеланомного происхождения. Список ОАА, распознаваемых ЦТЛ, постоянно пополняется.

Наиболее простой способ изготовления вакцин — использование интактных инактивированных опухолевых клеток (ОК) либо аутологических (клетки от того же больного, для которого и готовится вакцина), либо аллогенных (от разных пациентов). Клетки инактивируют ионизирующим излучением. Другой способ изготовления вакцин методически более сложен и заключается в получении экстрактов из ОК. Преимуществом этих вакцин является то, что они не требуют инактивации облучением, а отдельные компоненты клеток, в том числе белки, более адекватны, нежели интактные ОК, для фагоцитирования и процессинга макрофагами, что может приводить к амплификации иммунного ответа. На сегодняшний день изготовляют вакцины на основе отдельных компонентов опухолевой клетки — пептидов, белков теплового шока, полисахаридов и других.

Эффективность противоопухолевых вакцин можно усилить путем повышения иммуногенности опухолевых антигенов, что достигается различными методами: химической модификации при помощи гаптенов, модификации непатогенными вирусами и бактериями, трансфекции генов, кодирующих продукцию иммуностимулирующих цитокинов, таких как гранулоцит-макрофагальный колониестимулирующий фактор (ГМ-КСФ) и другие.

Казалось бы, найденные способы целенаправленного усиления антигенности опухолевых клеток, стимуляции адаптивного иммунитета должны приводить к развитию цитотоксической противоопухолевой реакции. Однако усиление антигенности является лишь частью решения этого вопроса, так как существуют и другие проблемы. Опухоль характеризуется не только множественностью своих антигенов, но и повышенной мутационной активностью (нестабильностью генома) с дальнейшим усилением признаков злокачественности. Этот процесс сопровождается постоянным изменением антигенного спектра, и можно заведомо предположить появление новых, недостаточно изученных антигенов. Например, подсчитано, что при раке кишечника у человека наблюдается около 11 тысяч нарушений генома, которые могут служить причиной экспрессии аномальных или сверхэкспрессии индивидуальных клеточных антигенов. В таких условиях остается важнейшим оптимальный выбор антигена (или группы антигенов), предназначенных для создания искусственной вакцины. Здесь очевидное преимущество сохраняется за аутовакцинами, содержащими весь спектр антигенов, против которых предполагается выработать иммунный ответ, в том числе индивидуальные и стадиоспецифические антигены, отличающие развитие опухолевого процесса у конкретного больного.

Безусловно, аутовакцины имеют свои слабые стороны, в первую очередь, их использование не дает удовлетворительного результата при всех заболеваниях. Судьба каждого больного во многом зависит от индивидуальных особенностей противоопухолевого иммунитета, поэтому результат применения вакцин не всегда удается предвидеть. Как бы то ни было, аутовакцина является сегодня наиболее действенным средством специфической иммунотерапии опухолевой болезни.

Использование микробных факторов для стимуляции противоопухолевого иммунитета

Клиническая онкология имеет большой опыт использования микробных факторов для стимуляции неспецифического противоопухолевого иммунитета, прежде всего, это — вакцина БЦЖ. Имеющиеся данные убеждают в эффективности аутовакцин. В США разработана и успешно применяется (D. Berd et al., 1998) вакцина, основанная на модификации аутологичных опухолевых клеток гаптеном динитрофенилом (ДНФ). Ее изготавливают из клеток меланомы больного (ДНФ-модифицированный антиген меланомы + БЦЖ) и вводят трехкратно внутрикожно. Вакцина инициирует уникальные реакции — развитие воспаления и рассасывание отдельных очагов метастазирования меланомы. Выживаемость больных значительно выше, чем при других методах лечения (в частности, терапии интерферонами, наиболее эффективной при меланоме).

В работе, выполненной в Европе (D.В. Vermorken et al., 1999) и опубликованной в английском журнале Lancet, продемонстрированы убедительные положительные результаты использования вакцины, изготовленной из операционного материала больных раком толстого кишечника в сочетании с БЦЖ. Такое лечение сокращает риск развития рецидива на 42-61%.

Упомянутые публикации, в которых описаны наиболее известные и подробно задокументированные случаи масштабного применения аутовакцин, подводят итог исследованиям и разработкам последнего десятилетия. Между тем, в научно-исследовательских учреждениях Украины, в первую очередь в Институте экспериментальной патологии, онкологии и радиобиологии им. Р.Е. Кавецкого, исследования, направленные на создание аутовакцин, проводятся уже более 20 лет, а первые данные о результатах использования таких вакцин в клинической практике получены еще в начале 80-х годов.

Приоритет в этой области принадлежит профессору Д.Г. Затуле и его ученикам. Их версия действенной аутовакцины связана прежде всего с выбором адъюванта, усиливающего иммунный ответ. В результате изучения свойств различных микроорганизмов в качестве такого адъюванта был выбран Bacillus mesentericus AB-56. Работы, выполненные Д.Г. Затулой, позволили установить наличие у этого микроорганизма свойств противоопухолевого антибиотика. Дальнейшие исследования подтвердили правильность этого выбора. В. mesentericus AB-56 успешно культивировали на субстратах, содержащих опухолевую ткань, а адъювантный фактор, предназначенный для обработки опухолевого материала, выделяли из его культуральной среды. Этот фактор представляет собой белок с выраженной иммуногенной активностью: он вызывает агглютинацию и гибель опухолевых клеток, а также повышает иммуногенность ассоциированных с опухолью антигенов.

В результате применения изготовленной таким путем вакцины стимулируется активность механизмов противоопухолевого иммунитета: возрастают активность натуральных киллеров и специфических Т-лимфоцитов, а также уровень комплементзависимых цитотоксических антител, отмечается общая активизация иммунной системы, повышается пролиферативный индекс центральных (вилочковая железа) и периферических (лимфоузлы, селезенка) органов иммунитета, что указывает на вовлечение в иммунный процесс мононуклеарных фагоцитов (дендритных клеток) с последующей стимуляцией лимфоидной ткани. Вакцинация в послеоперационный период подавляет жизнеспособность оставшихся опухолевых клеток и таким путем предотвращает или замедляет развитие метастазов и рецидивов.

В результате экспериментальных исследований, проводившихся на протяжении ряда лет в Институте экспериментальной патологии, онкологии и радиобиологии, создана и предложена для клинических испытаний противоопухолевая вакцина первого поколения. Основная часть клинических испытаний проведена в клиниках Института онкологии АМН Украины, а детальное изучение параметров вакцинации и независимая оценка полученных данных — на базе Российского онкологического центра (г. Москва). Результаты полностью подтвердили высокую эффективность вакцины. Следует подчеркнуть, что исследования на этапе клинической апробации осуществлялись с использованием метода рандомизации, что позволило исключить субъективный фактор при оценке результатов. Новизна и эффективность нового метода лечения подтверждены патентом Украины как способ получения оригинальной противоопухолевой вакцины.

В настоящее время параллельно проводятся экспериментальные исследования и клинические испытания вакцин второго и третьего поколений, обладающих более высоким иммуногенным потенциалом и безопасных в применении, совершенствуются способы их получения и изготовления.

К настоящему времени собран большой материал, подтверждающий эффективность применения вакцины при опухолевых заболеваниях с различными локализациями и стадиями процесса.

На основании полученных результатов можно сделать следующие выводы.

  1. Применение вакцинотерапии повышает качество и улучшает перспективы лечения онкологических больных: снижает вероятность развития рецидивов и появления метастазов заболевания, увеличивает продолжительность жизни больных.
  2. Оригинальная вакцина, созданная в Институте экспериментальной патологии, онкологии и радиобиологии, по уровню эффективности и безопасности применения соответствует мировым стандартам специфической иммунотерапии опухолей.

Иммунотерапия рака стоит на пороге важных открытий, включая создание новых вакцин с использованием инфекционных (бактериальных и вирусных) факторов, имеющих сродство с определенными видами ткани или общность с этиологическими факторами развития предопухолевых заболеваний (вирус папилломатоза человека — для рака шейки матки, вирус Эпштейна-Барр — для лимфом, вирусы гепатитов С и В — для рака печени, антигены Helicobacter pylori — для рака желудка).

Перспективы создания новых классов противоопухолевых вакцин

Перспективность этого направления была предсказана многими исследованиями и гипотезой Д.Г. Затулы об общности микробных и опухолевых антигенов и возможности практического использования этой закономерности. Эти предпосылки послужили основанием и для создания описанной выше аутовакцины, применение которой отнюдь не исчерпывает проблему, но является действенным шагом, способствующим повышению эффективности профилактики и лечения онкологических заболеваний.

Отдельное направление иммунотерапии опухолей развивается на основе прямой ДНК-вакцинации, главным моментом которой является использование плазмидных ДНК, способных к репликации под контролем эукариотических промоторов. Введенная ДНК не интегрируется с геномом, а существует в виде эписомы длительное время. Усиление синтеза белков, в том числе молекул главного комплекса гистосовместимости 1 класса, цитокинов после введения соответствующих генов способствует индукции клеточного противоопухолевого иммунитета. Мишенями для противоопухолевого иммунного ответа могут служить гликолипиды, гликопротеиды, антигены дифференцировки (MAGE, тирозиназа, Melan-A, gp 75), продукты онкогенов и другие, синтез которых запускается введением соответствующих последовательностей ДНК. Разработан ряд способов внедрения ДНК в клетку: баллистический метод, при котором микрошариками золота, покрытыми ДНК, бомбардируется поверхность клеток; метод электропорации, введение ДНК тонкой иголкой внутрикожно или методом скарификации при лечении больных с меланомой и другими опухолями кожи. ДНК может вводиться в составе катионных или pH-зависимых липосом, а также в составе рекомбинантных вирусов.

Новый класс специфических противоопухолевых вакцин разрабатывается на основе идиотипических детерминант иммуноглобулинов. Основной функциональной особенностью этих детерминант иммуноглобулинов является их способность индуцировать образование антител против антигена, использованного для иммунизации. Клетками-мишенями для антиидиотипических антител (АIАT) могут быть не только В-лимфоциты, имеющие иммуноглобулиновые рецепторы определенной специфичности, но и регуляторные Т-лимфоциты.

Установление факта, что антигенпредставляющие клетки играют важную роль не только в презентации, но и в превращении конформационного эпитопа в линейный, привело к экспериментам, в которых эти клетки, «нагруженные» опухолевыми антигенами, используют в качестве противоопухолевых вакцин.

Большие надежды возлагаются на иммунотерапию больных со злокачественными опухолями при помощи адаптивного переноса дендритных клеток (ДК), которые способны инициировать специфический противоопухолевый иммунный ответ, опосредованный цитотоксическими лимфоцитами. Уникальность функции ДК определяется их способностью к интернализации, процессингу и презентации антигенов наивным Т-лимфоцитам, то есть клеткам, ранее не подвергавшимся воздействию данного антигена. Этой способностью не обладают другие антигенпредставляющие клетки, такие как макрофаги или В-лимфоциты. Обычно зрелые ДК получают in vitro из CD34+ костномозговых предшественников или популяции моноцитов периферической крови. В настоящее время проводятся клинические испытания эффективности адаптивного переноса нагруженных опухолевыми антигенами ДК при метастазирующей меланоме, неходжкинской лимфоме и раке различных локализаций.

В заключение следует отметить, что, хотя перспективность использования противоопухолевых вакцин в онкологии можно считать установленной, их внедрение в клиническую практику ограничивается высокой стоимостью, а также довольно сложной технологией изготовления, требующей высококвалифицированного персонала и соответствующего оснащения. Можно надеяться, что разработка новых методов и совершенствование существующих технологий получения противоопухолевых вакцин позволят уже в ближайшее время использовать их в качестве доступного метода лечения онкологических больных.

medafarm.ru

Противораковая вакцина Вильяма Коли | Солнечное Вики

Противораковая вакцина Вильяма Коли — вакцина на основе бактерий Streptococcus pyogenes группы А и Serratia marcescens, которая была создана в конце XIX века американским хирургом-онкологом Вильямом Коли[en] (1862—1936) для лечения людей больных онкологическими болезнями. Также известна как «вакцина Коли»[1] «токсины Коли» или «флюиды Коли»[1][2][3][4].

В 1891 году Вильям Коли установил взаимосвязь между перенесённой инфекцией (скралатина, рожа), вызванной S. pyogenes и регрессией опухоли у пациентов[5][6]. В 1893 году он создал вакцину на основе S. pyogenes для лечения больных саркомой. Позже в состав вакцины были добавлены бактерии S. marcescens, которые усилили её противораковые свойства[7]. Несмотря на большое количество сообщений об успешном применении «противораковой вакцины», она подверглась огромной критике, потому что многие доктора не верили результатам Вильяма Коли. Данная критика вместе с развитием радиотерапии и химиотерапией привели к постепенному прекращению использования вакцины. Тем не менее, современная иммунология доказала, что принципы Вильяма Коли были верными и некоторые формы рака чувствительны к усиленной иммунной системе организма, что и являлось причиной излечения больных. Поскольку, в настоящее время, исследования в данной области ведутся очень активно, Вильям Б. Коли, получил титул «Отца иммунотерапии»[8].

В настоящее время данное направление возрождается, относится к области иммунотерапии рака и активно развивается в ряде стран (США, Германия, Япония). В Японии, после более чем 30 лет клинических испытаний, была выпущена вакцина под названием «пицибанил», которая представлена бактериями Streptococcus pyogenes группы А (особый не патогенный штамм Su). Было обнаружено, что вакцина вызывает в организме у человека активацию натуральных киллеров (атакуют опухолевые клетки) и выработку фактора некроза опухоли и интерлейкинов-12. Японский вариант вакцины оказался эффективным в лечении ряда форм рака (рак лёгких, рак молочной железы, рак щитовидной железы, рак желудка и, особенно, при доброкачественной опухоли лимфангиоме).[9]

    История открытия

    Первое систематическое исследование, посвяшенное применению иммунотерапии при лечении злокачественных форм рака было начато в 1891 году Вильямом Б. Коли — хирургом-онкологом, в 1915—1933 гг. он был Главой отдела «Саркомы кости» при Мемориальном Госпитале Нью-Йорка — первой онкологической больницы в Америке. Исследования Вильяма Коли были поддержаны первым в мире грантом на изучение рака и разработку методов лечения.

    Вильям Брэдли Коли родился в 1862 году в семье Горация Брэдли Коли и Кларины Вэйкман Коли в маленькой деревне Саугатук, штат Коннектикут. С 1884 года он учился в колледже при Йельском Университете, где изучал греческий и латинский язык, а в 1886 году поступил в Гарвардскую медицинскую школу, которую окончил в 1888 году. Затем он был зачислен в штат Нью-Йоркского Госпиталя в качестве хирурга. Одной из его первых пациенток в 1890 году была 17-летняя Элизабет Дашиэл — близкий друг Джона Рокфеллера. Элизабет обратилась к Вильяму Коли по поводу опухоли на руке, впоследствии диагностированной как саркома Юинга. Несмотря на ампутацию предплечья, Элизабет умерла от множественных метастазов через 10 недель. Такое быстрое распространение смертоносного рака глубоко потрясло Вильяма Коли. Он решил приложить все силы, чтобы найти более эффективное лечение. Он изучал истории болезней пациентов Нью-Йоркского Госпиталя и обнаружил необычный случай с одним из пациентов, который семью годами ранее имел неоперабельную форму злокачественной опухоли на шее, которая полностью регрессировала, после того как пациент заболел рожей. Пациент был выписан за отсутствием каких-либо признаков болезни. Вильям Коли лично решил найти и осмотреть этого пациента, который проживал на Манхеттене. Через некоторое время Коли, наконец, разыскал пациента — немецкого эмигранта Штейна и не обнаружил у него признаков остаточного рака, то есть Штейн полностью излечился от злокачественной опухоли шеи.

    Необычное выздоровление Штейна было яркой противоположностью быстрой смерти Элизабет и вдохновило Вильяма Коли на поиски литературных данных о других онкологических больных, которые излечились от одновременной бактериальной инфекции.

    Среди найденных им данных, можно отметить сообщение Дайдера от 1725 года, который отмечал, что у пациентов больных сифилисом опухоли возникают очень редко. Сэр Джеймс Пэйдж отмечал, что некоторые виды инфекций могут вызывать регрессию (уменьшение) некоторых типов опухолей. Кроме того, Вильям Коли обнаружил в литературе более конкретные примеры. Так в 1867 году немецкий врач Буш сообщил о случае полного излечения пациента от злокачественной опухоли, после заражения рожей. Но стрептококковую бактерию, которая вызывала рожистое воспаление кожи, идентифицировали только в 1881 году (S. pyogenes — бета-гемолитические стрептококки группы А). В 1885 году Брунс намеренно сделал инъекцию стрептококков пациенту, чтобы вызвать рожистое воспаление и зарегистрировал уменьшение опухоли. В целом Вильяму Коли удалось собрать 47 документальных свидетельств, указывающих на противораковые свойства данной инфекции.

    Набравшись мужества, в 1891 году Вильям Коли сделал первую инъекцию живых стрептококковых бактерий пациенту (итальянец, 30 лет) с последней стадией неоперабельной формы саркомы кости и отметил уменьшение размеров опухоли через неделю. Прививки повторялись несколько месяцев и привели к полной регрессии опухоли, в то время как здоровье пациента постепенно восстанавливалось. Это побудило Вильяма сделать инъекции ещё двум пациентам с обширной саркомой. И хотя опухоль начала уменьшатся, оба пациента умерли от инфекции. Поскольку живые стрептококки оказались крайне опасными, Вильям Коли решил сменить тактику и продолжил лечение неоперабельных больных, используя вакцину на основе стрептококков, которые предварительно были убиты нагреванием. Чтобы усилить действие вакцины он включил в неё ещё один вид бактерий, в настоящее время известный как Serratia marcescens. Данная смесь из убитых бактерий получила название «Токсинов Коли» или «Вакцины Коли». Теперь вакцина не вызывала рожи, но вызывала сильный иммунный ответ, сопровождающийся высокой температурой. Первым человеком, которому была сделана инъекция данной вакцины в 1893 году, был пациент, прикованный к постели с неоперабельной формой саркомы, метастазировавшей на брюшную стенку, кости таза и мочевой пузырь. Под действием вакцины болезнь стала отступать, и злокачественная опухоль была полностью побеждена, а пациент прожил ещё 26 лет.

    Интересен случай 43-летней женщины с неоперабельной формой обширного рака шейки матки. Поскольку хирургия помочь ей уже не могла, то её выписали из больницы. Но сын этой женщины был доктором и решил лечить её дома с помощью инъекций вакцины Коли. Инъекции производились два раза в неделю в течение шести месяцев, а затем дополнительно по разу в неделю в течение года. После каждой инъекции поднималась высокая температура, а опухоль постепенно уменьшалась в размере. Женщина смогла вернуться к нормальной жизни. После некоторого периода отдыха было назначено профилактическое лечение, которое продолжалось 18 месяцев. Женщина прожила ещё 36 лет после постановки диагноза.

    Вскоре был обнаружен благотворный эффект высокой температуры — уменьшение болей, вызванных опухолью. При этом пациенты могли сократить или даже вовсе прекратить прием обезболивающих наркотических медикаментов. Уменьшение болей часто происходило немедленно после инъекции вакцины и предшествовало регрессии опухоли. Один из пациентов говорил, что боли всегда исчезали, сразу же после инъекции вакцины. Вильям Коли использовал вакцину и для пациентов в юном возрасте. Описан случай девятилетней девочки, которая уже не вставала с постели в больнице Коннектикута и не могла закрыть рот. Огромная опухоль не позволяла ей сомкнуть челюсти, и её не возможно было удалить хирургическим путем. Единственным лечением была вакцина Коли. Иньекции делали два раза в неделю, и после каждой отмечалась высокая температура и сильный озноб. Через два месяца опухоль полностью регрессировала, и девочка смогла вернуться домой, где получала поддерживающее лечение вакциной ещё в течение 5 месяцев. Впоследствии девочка выросла. Когда она проходила осмотр в больнице в 1953 году (спустя 46 лет после болезни), то была совершенно здорова и свободна от каких-либо симптомов рака.

    К 1893 году Вильям Коли испытал вакцину на 10 пациентах, большинство из которых полностью излечились. К 1916 году Коли задокументировал более 80 случаев в монографиях. К концу карьеры Вильям Коли опубликовал более 150 статей, пролечил около 896 пациентов, половина из которых полностью излечилась от злокачественных опухолей. Медицинские журналы, в которых Вильям Коли публиковал свои результаты, имели широкий круг читателей. В то время, как часть читателей игнорировала его статьи, большое число врачей в Америке и Европе независимо решили практиковать новый метод лечения рака. Ещё до наступления 1900 года, 42 врача из Европы и Северной Америки сообщали о случаях успешного лечения пациентов вакциной Коли.

    Наибольшая слава пришла к Вильяму Коли в конце 1935 года, когда он выступил с данными по 5-и летней выживаемости пациентов с неоперабельными формами злокачественных опухолей на собрании Королевской Коллегии Хирургов в Англии. Это авторитетнейшее общество Англии возвело Вильяма Коли в ранг почетного члена (он был пятым американцем, удостоенным такой чести).

    Однако после смерти Вильяма Коли в 1936 году использование его вакцины постепенно сократилось, что было связано не столько с развитием химиотерапии и радиотерапии, сколько с отсутствием на тот момент общепризнанных физиологических механизмов, которые бы объяснили противоопухолевый механизм действия его вакцины. Это обстоятельство вызывало недоверие многих докторов того времени. Лишь в 1934 году Американская Медицинская Ассоциация постановила, что вакцина Вильяма Коли по необъяснимым причинам может иметь значение в предотвращении или уменьшении рецидивов рака и метастазах и может использоваться для лечения неоперабельных больных.

    Но в конце 50-х, когда химиотерапия стала считаться противораковым лекарством будущего, вакцина Коли оказалась практически забытой. И не было бы продолжения этой истории, если бы не дочь Вильяма Коли — Хелена (1907—2001), которая приложила все усилия, чтобы труды её отца не были утеряны. В 1953 году Хелена Коли Наутс получила грант от Нельсона Рокфеллера и основала Институт Исследования Рака в Нью-Йорке, где по сей день активно развивается направление иммунотерапии раковых опухолей.

    Следует отметить, что вакцина Коли была эффективна не только при саркоме, но и при многих других видах злокачественных образований и метастазах. Среди 896 пациентов Вильяма Коли 5-и летняя выживаемость при различных видах неоперабельной карциномы составила 34-73 %. А у пациентов с неоперабельной формой саркомы 5-и летняя выживаемость составила 19-79 % (то есть примерно соответствовала выживаемости при карциноме), степень варьировала в зависимости от типа опухоли.

    В 1999 году было проведено ретроспективное исследование по международным базам данных SEER (Surveillance Epidemiology End Results), которое сравнивало 10-летнюю выживаемость пациентов, которым применялась терапия современными методами с выживаемостью пациентов, получавших вакцину Вильяма Коли. В результате было установлено, что, несмотря на миллиарды долларов, которые выделяются на разработку инновационных методов лечения онкологических болезней, состояние пациентов, которым проводилась терапия рака современными средствами, было далеко не лучше, чем состояние пациентов, которые получали вакцину, открытую Вильямом Коли больше 100 лет назад. При сравнении 5-и летней выживаемости можно привести следующий пример. Например, среди пациентов Вильяма Коли было 33 случая рака молочной железы. Из них 13 случаев — операбельная форма. Все 13 пациентов через 5 лет после лечения были живы. Остальные 20 пациентов имели неоперабельную форму рака и их пятилетняя выживаемость составила около 65 %. По данным Американского Онкологического Общества за 1989—1996 гг. 5-летняя выживаемость больных неоперабельной формой рака молочной железы составляет 20 % при условии лечения с помощью современных достижении онкологии. Кроме того, следует отметить тот факт, что вакцина Коли была свободна от тех побочных эффектов, которые сопровождают химиотерапию. Таким образом, вакцина Коли была очень эффективной противораковой терапией, которая по степени эффективности сравнима с современными методами.

    Механизмы действия вакцины

    Во времена Вильяма Коли ещё не существовало знаний, которые позволили бы понять его результаты. Сам Вильям Коли считал, что при введении вакцины, в организме человека начинают образовываться «токсические факторы», которые вредны для опухолевых клеток и щадящие для нормальных типов клеток. В то время как современники Вильяма Коли обсуждали достоверность полученных им результатов, его метод обозначил новую научную область в иммунологии. Новое развитие метод Вильяма Коли получил вместе с развитием иммунологии, которая показала, что его принципы были верными и некоторые виды злокачественных новообразований действительно чувствительны к усиленному иммунному ответу. В настоящее время наиболее активно изучаются биохимические особенности воздействия компонентов бета-гемолитического стрептококка группы A (S. pyogenes) с клетками иммунной системы. [10][11]

    Толл-подобные рецепторы (ТПР) и цитокины

    При глубоком изучении иммунной системы человека было открыто семейство Толл-подобных рецепторов (в 1990-х), которые объясняют один из механизмов действия вакцины Коли. Рецепторы данного класса распознают определенные структуры микроорганизмов и активируют каскады иммунного ответа. Было обнаружено, что липотейхоевые кислоты, липополисахариды и фрагменты ДНК S. pyogenes действует на ТПР-4, ТПР-2 и ТПР-9 дендритных клеток, макрофагов и лимфоцитов, запуская выработку сложного каскада цитокинов, каждый из которых играет уникальную роль в оркестре иммунного ответа.

    Важная роль при этом отводится выработке альфа-интерферона, который проявляет противораковую активность в отношении таких типов неоплазм как лейкемия, лимфома, миелома, саркома Капоши, меланома, ренальная карцинома, аденокарцинома, рак печени, остеосаркома и рак мочевого пузыря. Кроме того, обнаружено, что альфа-интерферон проявляет противовирусную активность при некоторых типах вирусных инфекций: гепатит B и С, японский энцефалит и энцефалит сент-луис.

    Другим интересным цитокином в каскаде является интерлейкин-2, который относится к факторам роста Т-клеток и натуральных киллеров. Данный цитокин в настоящее время используется при опухолях практически любого типа. Кроме того интерлейкин-2 в качестве адъюванта широко применяется при терапии ВИЧ-инфекции.

    Фактор некроз опухолей-альфа (ФНО) определяется в тканях животных и пациентов, которым вводили вакцину на основе S. pyogenes. ФНО выделялся моноцитами, как реакция на липополисахариды и липотейхоевые кислоты S.pyogenes. Оказывает цитотоксическое действие на опухолевые клетки, вызывая уменьшение размеров опухоли. При этом также вырабатывается интерлейкин-6, который стимулирует иммунный ответ и активирует выработку других цитокинов[источник не указан 1207 дней].

    Одним из активных компонентов вакцины считаются липополисахариды клеточной стенки бактерий, которые вызывают гипертермию. Это приводит к активации лимфоцитов и выделению факторов некроза опухоли[12]. Цунг и Нортон сообщают, что активным веществом, которое вырабатывает сам организм в ответ на введение вакцины, скорее всего являются интерлейкины-12[13].

    Патоген-ассоциированный молекулярный паттерн (ПАМП)

    Недавно было предложено иммунологическое объяснение, которое объединило данные иммунологических исследований и случаи спонтанного выздоровления от рака и эпидемиологические данные, которые указывают на то, что вероятность развития рака снижается после перенесённой инфекции[14]. Согласно данной гипотезе антигены, продуцируемые некоторыми видами бактерий, вирусов и грибов, но не человеческой тканью, называются «патоген-ассоциированным молекулярным паттерном», который запускает активацию и дифференцировку дендритных клеток (которые презентируют малигнантные клетки). Считается, что среди таких ПАМП основную роль играет неметелированный сайт CpG, обнаруженный в бактериальной ДНК. Данный сайт распознается Толл-подобными рецепторами-9, что вызывает сильную стимуляцию активности Т-помощников, которые усиливают иммунный ответ и способствуют уничтожению малигнантных (раковых) клеток.

    Дендритные клетки

    Установлено, что важнейший противораковый механизм вакцины на основе S.pyogenes связан с ускорением созревания дендритных клеток. Установлено, что активация дендритных клеток вызывается взаимодействием ТПР-9 с фрагментами ДНК S. pyogenes. При этом дендроциты начинают активно вырабатывать интерлейкин-12 и гамма-интерферон, увеличивают экспрессию антигенов (CD40, CD80, CD83, CD86), молекул клеточной адгезии (ICAM-1) и индуцируют появление цитотоксических лейкоцитов со специфической противоопухолевой активностью. Таким образом, компоненты клеток S.pyogenes активируя дендритные клетки организма человека, стимулируют специфический противораковый иммунитет. [15][16][17][18][19]

    Противоопухолевый белок SAGP

    Это гликопротеин, который был выделен из экстракта S.pyogenes. Секвенирован ген, кодирующий белок SAGP и определена его молекулярная масса — 140—150 кДа. Было установлено, что данный белок, действуя на опухоль напрямую, угнетает митотическую активность опухолевых клеток и вызывает их апоптоз. Эти эффекты опосредуются иммуномодулирующими свойствами белка SAGP. [20][21][22]

    Стрептокиназа и протеолитические ферменты

    Хелена Коли высказывала мнение, что один из механизмов, объясняющих противораковый эффект вакцины Коли, может быть связан со стрептокиназой. Данный фермент, вырабатывающийся S.pyogenes, при взаимодействии в крови человека с проактиватором плазминогеном, образует плазмин, который активирует систему быстрого фибринолиза и растворяет волокна фибрина в кровяных сгустках и тромбах. Установлено, что система плазмина также оказывает угнетающее действие на рост некоторых типов злокачественных опухолей. Отмечено повышение эффективность химиотерапии в сочетании со стрептокиназой, которая увеличивает чувствительность опухоли к препаратам.

    В другой работе in vitro установлено прямое разрушающее действие протеолитических ферментов S. pyogenes на 4 типа клеток карцином человека. При этом основная противораковая активность обнаружена у экзотоксина B.

    Таким образом, можно заключить, что вакцина Коли помимо прямого действия на опухоль, приводила к мощному стимулированию неспецифического иммунитета, а также специфического — противоракового. Данные механизмы требуют дальнейшего изучения. В настоящее время активно разрабатываются вакцины на основе S. pyogenes. Так в 2005 году вакцина Коли была воссоздана Канадской фармацевтической фирмой MBVax, проводятся её испытания. Кроме того, уже давно существует аналог вакцины Коли — японский препарат пицибанил. [23][24][25]

    Доступность

    Канадская биотехнологическая компания MBVax Bioscience производит «флюиды Коли» для доклинических и клинических исследований[26][27]. Частная компания Coley Pharmaceutical Group провела клинические испытания с использованием некоторых фрагментов ДНК-последовательностей бактерий, которые могут отвечать за противораковый эффект «вакцины Коли». Данная компания была куплена компанией Pfizer в декабре 2008 года[28]. Компании Pfizer и Sanofi-Aventis заинтересованы в разработке современного состава «вакцины Вильяма Коли»[29].

    Японский аналог вакцины Вильяма Коли

    Большое развитие идеи Вильяма Коли получили в Японии, где была создана вакцина на основе непатогенного типа Streptococcus pyogenes, штамм Su (бета-гемолитический стрептококк группы A). Основные выводы, сделанные японскими группами исследователей в 1961—1980 гг., состояли в следующем. Живые бактерии S. pyogenes гораздо более эффективно вызывают регрессию различных видов злокачественных опухолей и предотвращают метастазы, чем убитые термической обработкой. Прямая противоопухолевая активность — это уникальное свойство S. pyogenes и у других грамм-позитивных и грамм-негативных бактерий не обнаружена. Высокая противораковая активность S. pyogenes не является результатом действия отдельных компонентов бактериальных клеток (клеточ. стенка, ферменты и т. д.), а проявляется как суммарное либо синергетические действие всех компонентов. Отдельные компоненты S. pyogenes обладают более слабыми противоопухолевыми свойствами. Был выведен авирулентный (непатогенный) штамм Su S.pyogenes, который не отличался по своей противораковой активности от вирулентного материнского штамма. [30][31]

    После длительного периода доклинических и клинических испытаний в 1975 году Министерство Здравоохранения Японии утвердило использование нового препарата — ОК-432 или пицибанила, который состоял из клеток S.pyogenes штамма Su, подвергнутых специальной обработке. В ходе обработки бактерии теряют способность делится, а их токсины нейтрализуются. До настоящего времени пицибанил с наибольшим успехом используется в лечении лимфангиомы. Так вероятность успешного лечения у детей лимфангиомы макрокистозного типа составляет до 100 %, однокистозного типа — 90,9 %, микрокистозного — 68 % и кавернозного — 10 %. Поэтому, при лечении лимфангиомы пицибанил предложен в качестве лекарства первой линии. В 2003 году был основан «Фонд имени Шухэй Огиты», который оказывает помощь в приобретении препарата больным лимфангиомой во всем мире. [32][33]

    Также пициабнил используется как адъювант при химиотерапии злокачественных образований. Пицибанил в комбинации с химиотерапией продлевает среднюю продолжительность жизни пациентов с раком желудка (послеоперационные случаи) и пациентов с ранней стадией рака легких; уменьшает плевральные энффузии и асциты у пациентов с раком двенадцатиперстной кишки и раком легких; а также при раке шеи и головы, раке щитовидной железы, которые устойчивы к другим видам лекарств Побочными эффектами при лечении пицибанилом могут быть: температура, болевые ощущения, отек и покраснение, лейкоцитоз и тромбоцитоз. Данная вакцина имеет сложный противоопухолевый механизм действия. Во-первых, действуя напрямую, угнетает синтез РНК и пролиферативную активность опухолевых клеток. Во-вторых, вакцина действует на опухоль опосредованно, запуская в организме каскады цитокинов. Среди них идентифицированы такие цитокины как интерлейкин-8, гранулоцитарный-колониестимулирующий фактор и гранулоцит-макрофаг-колониестимулирующий фактор, которые вызывают активацию гемопоэтических клеток красного костного мозга, что приводит к увеличению количества лейкоцитов и тромбоцитов. Этот же механизм ответственен за радиопротекторный эффект пицибанила и стимуляцию регенерации печени. Группа цитокинов (интерлейкин-2, интерлейкин-12, интерлейкин-18, гамма-интерферон) действуют на клетки иммунной системы, ускоряя созревание дендритных клеток, увеличивая активность натуральных киллеров, количество Т-хэлперов-1 и макрофагов. Некоторые из цитокинов (фактор некроза опухоли, перфорин и гамма-интерферон) действуют непосредственно на опухолевые клетки, индуцируя апоптоз или угнетая их активность. [34][35][36]

    Таким образом, созданная более чем 100 лет назад противораковая вакцина Вильяма Коли и его идеи, положили начало иммунотерапии рака. И в настоящее время создаются различные варианты вакцины Коли, чтобы дополнить арсенал современных средств лечения онкологических болезней[источник не указан 1207 дней].

    Российский аналог вакцины Вильяма Коли

    Данный раздел имеет чрезмерный объём или содержит маловажные подробности.Если вы не согласны с этим, пожалуйста, покажите в тексте существенность излагаемого материала. В противном случае раздел может быть удалён. Подробности могут быть на странице обсуждения.
    Эта статья во многом или полностью опирается на источники, аффилированные с предметом статьи или иной заинтересованной стороной, что может вызвать сомнения в нейтральности и проверяемости представленной информации. Такие источники также не показывают значимость предмета статьи.Статью можно улучшить, использовав независимые вторичные источники вместо аффилированных.(1 января 2015)

    В России на основе идей Вильяма Коли к.б.н. А. А. Моровой и известным российским ученым д.м.н. академиком РАМН и РАН В. А. Черешневым также велась разработка противоопухолевого препарата. Ими была выдвинута гипотеза, согласно которой некоторые штаммы бета-гемолитического стрептококка группы А следует рассматривать по отношению к человеку не как паразитов, а как симбионтов (а именно мутуализм). Авторами в довоенном микробиологическом музее ГИСК им. Л. А. Тарасевича был найден особый непатогенный для человека и животных штамм Streptococcus pyogenes «Гуров», хранящийся в музее с 1944 года. Авторы описывают его как живой вакцинный штамм, симбионт человека, который не вызывает инфекции при прививке и продуцирует комплекс ферментов и полисахаридов, которые оказывают многостороннее терапевтическое воздействие на организм человека. На основе штамма «Гуров» была создана живая вакцина «Пиротат» (так же известная как вакцина Черешнева или вакцина Моровой), которая использовалась для лечения и профилактики сердечно-сосудистых, онкологических и вирусных заболеваний. Преимущество отечественной разработки по сравнению с вакциной Вильяма Коли и японским Пицибанилом заключалось в том, что использовался живой штамм, что позволяло задействовать для борьбы с опухолью, не только полисахариды, но и онколитические ферменты (стрептолизины, протеазы и стрептокиназу). Как уже отмечалось выше, живые бактерии S. pyogenes гораздо более эффективно вызывают регрессию различных видов злокачественных опухолей и предотвращают метастазы, чем убитые термической обработкой.

    Файл:Gurov.jpg

    По результатам работы авторами было получено несколько патентов на изобретение:

    • RU 2317090 Способ лечения иммунодефицитных состояний
    • RU 2086246 Способ получения энзимотерапевтического, противовирусного и иммуномодулирующего препарата и энзимотерапевтический, противовирусный и иммуномодулирующий препарат
    • RU 2194520 Способ лечения и профилактики сердечно-сосудистых заболеваний

    Авторы пишут, что вакцину получили около 1800 добровольцев, и были успешно пролечены главным образом от сердечно-сосудистых патологий и тромбозов, а так же около 200 человек с онкологическими болезнями. До настоящего времени ведутся дополнительные испытания вакцины и штамма на животных, проверка иммуномодулирующих свойств, более комплексная оценка[37]. [38]

    Гипотеза

    А. В. Черешнев и А. А. Морова проанализировали работы в области онкологии, иммунологии, микробиологии, экологии и пришли к следующим выводам (приведены в сокращенном и упрощенном виде):

    • в процессе длительных эволюционных отношений при формировании экосистемы «организм человека — эндосимбионтные бактерии» стрептококками группы А был выработан не только особый иммунологический статус (сохранение длительного бессимптомного носительства бактерий), но и создан уникальный комплекс ферментов, который обеспечивал долговременное сохранение внутренней среды организма человека.
    • Путем выделения своих ферментов бактериями достигалась стабильность среды их обитания, то есть человеческого организма. В свою очередь, человеческий организм мог оптимально функционировать только с включением в регуляторные биохимические процессы ферментов, продуцируемых гемолитическими стрептококками группы А: фибринолитических, липолитических, сахаролитических, протеолитических, нуклеолитических и других необходимых ферментов.
    • Вмешательство антибактериальных средств, выполненное без учета данной закономерности, привело к нарушению выработанных природой организма человека с различными представителями микромира, что обусловило снижение его жизнеспособности и усиление фатальных болезней. Произошел переход от сформированных в процессе эволюции отношений с симбионтными бактериями, к новому состоянию, создающему благоприятные условия для длительного присутствия в организме вирусов и заселения его вирулентными видами микроорганизмов.
    • Носительство симбионтных бактерий как таковое исключает возникновение вирусоносительства в силу природного антагонизма между бактериями и вирусами. Вырабатываемые симбионтными бактериями нуклеолитические ферменты ДНаза и РНаза подвергают растворению в организме человека вирусную нуклеиновую кислоту ДНК и РНК независимо от вида вируса.
    • Длительное применение антибактериальных препаратов обсуловило утрату естественных иммуностимуляторов — полисахаридов клеточной стенки бактерий, что привело к ухудшению защитных функций иммунной системы организма человека (снижение активности Т- и В- лимфоцитов, системы комплимента, неспособности к подавлению вирусных и бактериальных инфекций).
    • Увеличение количества сердечно-сосудистых заболеваний связано с ухудшением реологических свойств крови (ее повышенной вязкостью и склонностью к спонтанному внтурисосудистому тромбообразованию), что осложняется инфарктом миокарда, инсультом, тромбозами и эмболией. Причиной этих явлений служит прекращение функционирования ферментативного фибринолиза, который осуществляется системой плазмина, при наличии в организме активатора этой системы — бактериального фермента стрептокиназы.
    • Устойчивый иммностимулирующий, противовирусный и энзимотерапевтический результат получен при многих заболеваниях методом восстановления нормального микробиоциноза с помощью музейного штамма симбионтных бактерий. Восстановление симбиоза с бактериями обеспечивает быструю реабилитацию больных при многих заболеваниях и обусловливает профилактику онкологических, сердечно-сосудистых, аллергических, вирусных и других заболеваний.

    Авторы отмечают, что благодаря тому что, бактериальные клетки стрептококков группы А, покрыты капсулой из гиалуроновой кислоты, они подобны собственным тканям организма человека и не воспринимаются им как чужеродные. Персистируя в лимфосистеме (миндалины, лимфоузлы, пейеровы бляшки), они получают питание из богатой питательными веществами лимфы, омывающей и питающей собственные клетки организма, оказывая одновременно иммуностимулирующее действие на все органные структуры иммунной системы. Находясь в лимфосистеме, популяция этих бактерий длительное (на протяжении всей жизни человека) время защищена от внешних воздействий, и ее функции направлены на сохранение стабильности среды своего обитания, то есть организма человека.[39]. [38]

    Метод биотерапии

    Терапия онкологических болезней

    А. В. Черешневым и А. А. Моровой в подтверждение выдвинутой гипотезе был предложен и апробирован с 1974 года метод биотерапии с применением живой вакцины «Пиротат» на основе штамма Гуров, которая вводится внутрикожно при строгой дозировке и по определенным лечебным схемам. В отличие от метода Вильяма Коли, принятый А. В. Черешневым и А. А. Моровой метод исключает появление болезненного процесса типа рожистого воспаления, но восстанавливает нормальный микробиоценоз и долговременное носительство симбионтных бактерий. При значительной опухолевой нагрузке лечение состоит из предварительного этапа биотерапии с последующим оперативным вмешательством, после чего вновь следует этап биотерапии. Авторы отмечают, что на начальных стадиях онкологического заболевания и предопухолевом состоянии одной только биотерапии было достаточно для нормализации всех функций организма. Но попытки остановить опухолевый процесс, перешедший в третью и четвертую стадию, чаще всего, оканчивались неудачей.

    При следующих заболеваниях наблюдалась полная ремиссия (излечение):

    • Мелонома (маланобластома), в том числе третья стадия
    • Лимфома Ходжкина (лимфогрануломатоз), в том числе третья стадия
    • Генитальный рак со множественными метастазами в органах
    • Рак легкого
    • Лечение метастазов в легких, печени, кишечнике (основной узел был удален до биотерапии)[40].

    Авторы рекомендуют биотерапию для профилактики онкологических заболеваний за счет стимуляции естественного противоракового иммунитета (способность иммунных клеток человека распознавать и уничтожать трансформированные клетки).

    Терапия сердечно-сосудистых болезней

    Метод биотерпии, предложенный А. В. Черешневым и А. А. Моровой, как оказалось, в большей степени подошёл для лечения сердечно-сосудистых болезней, за счет стрептокиназы, вырабатываемой штаммом Гуров. Авторы отмечают, что при дозированном внутрикожном введении вакцины Пиротат, бактерии персистирующие затем в лимфосистеме, выделяют свои метаболиты, в том числе фермент стрептокиназу, что приводит к возобновлению функционирования ферментных систем организма и быстрому улучшению здоровья больных. При сердечно-сосудистой патологии система экстренного ферментного фибринолиза включается немедленно, что выражается в улучшении гемодинамики, снижении артериального давления, уменьшении периферических отеков, заживлении язв и трофических расстройств. Восстановлением функционирования фибринолитической системы плазмина, активируемым стрептокиназой, достигается лизис старых тромбов, что отмечается возобновлением двигательной активности конечностей, нарушенной после перенесенного ранее ишемического инсульта с парезом конечностей. Действие системы плазмина определяется не только способностью предотвращать спонтанное внутрисосудистое тромбообразование, но и значительно изменять реологические свойства крови, разжижать ее консистенцию. А это, в свою очередь, способствует улучшению гемодинамики и кровоснабжению самых тонких микрокапилляров, в которые сгущенная кровь не поступает. А. В. Черешнев и А. А. Морова после восстановления микробиоценоза у многих пациентов отмечали не только исчезновение тромбоза нижних конечностей, но и прекращение головных болей, снижение сахара в крови, улучшение зрения и других симптомов неполноценно функционировавшего ранее гомеостаза. Эти позитивные биологические явления происходили за счет улучшения реологических свойств крови, ее разжижения, что улучшило процессы микроциркуляции.

    Наибольший эффект от применения биотерапии наблюдался при следующих сердечно-сосудистых нарушениях:

    • Ишемическая болезнь сердца со стенокардией напряжения
    • Хроническая сердечная недостаточность
    • Артериальная гипертензия, гипертоническая болезнь
    • Тромбозы вен нижних конечностей
    • Тромбофлебиты и флеботромбозы
    • Атеросклероз
    • Нарушения трофики тканей
    • Постинфарктное состояние
    • Облитерирующий эндартериит
    • Периферические отеки

    Авторы рекомендуют биотерапию для профилактики:

    • Инфаркта миокарда
    • Инсульта
    • Тромбоэмболии[41].
    Терапия вирусных болезней

    Авторы отмечают, что на практике при применении биотерапии, у пациентов наблюдалось восстановление здоровья при вирусных заболеваниях. Снижались титры к вирусу гепатита С, ВИЧ, исчезали вирусы герпеса, проходили симптомы мононуклеоза.

    Черешнев и Морова приводят схему профилактики клинических симптомов СПИДа у серопозитивных лиц. Метод предусматривает проведение двухэтапного процесса биотерапии с помощью штамма Гуров.

    • Первый этап. Создание в организме клона Т-лимфоцитов не имеющих на своей поверхности рецепторов к вирусу ВИЧ, и повышение общей протективной функции иммунной системы. Этот процесс осуществляется методом антигенной стимуляции Т-лимфоцитов при интрадермальном введении убитых клеток симбионтных бактерий, состоящих из антигенов поверхностных полисахаридов и липополисахаридов клеточной стенки. Продолжительность этапа 1-1,5 месяца.
    • Второй этап. Снижение титра антител к вирусу ВИЧ у серопозитивных лиц. Данный терапевтический результат достигается с одновременно со значительным улучшением состояния здоровья человека, что происходит после интрадермальных введений определенной дозы живых клеток симбиотных бактерий. Продолжительность этапа 1 месяц. Общая продолжительность процессов биотерапии 2-2,5 месяцев.

    Снижение титра антител к вирусу ВИЧ может продолжаться в течение 3-4 месяца, т.е. и после прекращения биотерапии. Это явление обусловлено восстановлением бактерионосительства и выделением бактериальными клетками нуклеолитических и протеолитических ферментов.

    См. также

    Ссылки

    1. ↑ 1,01,1Taniguchi Y, Nishizawa T, Kouhchi C, et al. (2006). «Identification and characterization of lipopolysaccharide in acetic acid bacteria». Anticancer Res. 26 (6A): 3997–4002. PMID 17195448.
    2. ↑ Thotathil Z, Jameson MB (2007). «Early experience with novel immunomodulators for cancer treatment». Expert opinion on investigational drugs 16 (9): 1391–403. DOI:10.1517/13543784.16.9.1391. PMID 17714025.
    3. ↑ Coley Toxins Detailed Scientific Review at mdanderson.org
    4. ↑ [1] Pick, Thomas Pickering, "Surgery, " Longmans, Green and Company, 1899, Pages 250—251. Retrieved August 3, 2010.
    5. ↑ «The Cancer Chronicles», Ralph W. Moss, PH.D., 1996
    6. ↑ Coley WB. Annals of Surgery 1891;14:199-200
    7. ↑ McCarthy EF (2006). «The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas». The Iowa orthopaedic journal 26: 154–8. PMID 16789469.
    8. ↑ (2006) «The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas». The Iowa orthopaedic journal 26: 154–8. PMID 16789469.
    9. ↑ YOSHIKI RYOMA, YOICHIRO MORIYA, MASATO OKAMOTO, ISAO KANAYA, MOTOO SAITO and MITSUNOBU SATO et al. (2004). «Biological Effect of OK-432 (Picibanil) and Possible Application to Dendritic Cell Therapy». Anticancer Res. 24: 3295-3302. PMID 15515424.
    10. ↑ Decker W.K., Safdar A. Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley's legacy revisited // Cytokine Growth Factor Rev. — 2009. — В. 4. — С. 271-281.
    11. ↑ Hoption Cann S. A., van Netten J. P., van Netten. C. Dr William Coley and tumour regression: a place in history or in the future // Postgrad. Med. J.. — 2003. — В. 79. — С. 672–680.
    12. ↑ Proposed Mechanism of Action. Проверено 10 ноября 2007.
    13. ↑ Tsung K, Norton JA (2006). «Lessons from Coley's Toxin». Surgical oncology 15 (1): 25–8. DOI:10.1016/j.suronc.2006.05.002. PMID 16814541.
    14. ↑ Hobohm U, Grange J, Stanford J: [2] Pathogen associated molecular pattern in cancer immunotherapy, Critical Reviews Immunology (2008) Vol 28, 95-107
    15. ↑ Ojima T., Iwahashi M., Nakamura M., Matsuda K., Nakamori M., Ueda K., Naka T., Katsuda M., Miyazawa M., Iida T., Yamaue H. Streptococcal preparation OK-432 promotes the capacity of dendritic cells (DCs) to prime carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocyte responses induced with genetically modified DCs that express CEA // Int. J. Oncol.. — 2008. — С. 459-466.
    16. ↑ Oshikawa T., Okamoto M., Tano T., Sasai A., Kan S., Moriya Y., Ryoma Y., Saito M., Akira S., Sato M. Antitumor effect of OK-432-derived DNA: one of the active constituents of OK-432, a streptococcal immunotherapeutic agent // J. Immunother.. — 2006. — С. 143-150.
    17. ↑ Ryoma Y., Moriya Y., Okamoto M., Kanaya I., Saito M. Biological Effect of OK-432 (Picibanil) and Possible Application to Dendritic Cell Therapy // Anticancer. Research. — 2004. — С. 3295-3302.
    18. ↑ Hovden A.-O., Karlsen M., Jonsson R., Aarstad H. J. Maturation of monocyte derived dendritic cells with OK432 boosts IL-12p70 secretion and conveys strong T-cell responses // BMC Immunology. — 2011. — С. 2-5.
    19. ↑ West E., Ruth M. Scott K., Merrick A., Lubenko A., Pawson D., Selby P., Hatfield P., Prestwich R., Fraser S., Eves D., Anthoney A., Twelves C., Beirne D., Patel P., O'Donnell D., Watt S., Waller M., Dietz A., Robinson Philip., Melcher A. Clinical Grade OK432-activated Dendritic Cells: In Vitro Characterization and Tracking During Intralymphatic Delivery // Journal. of Immunotherapy. — 2009. — С. 66-78.
    20. ↑ Kanaoka M., Fukita Y., Taya K., Kawanaka C., Negoro T., Agui H. Antitumor activity of streptococcal acid glycoprotein produced by Streptococcus pyogenes Su // Jpn. J. Cancer. Res. — 1987. — С. 1409-1414.
    21. ↑ Yoshida J., Ishibashi T., Nishio M. Growth-inhibitory Effect of a Streptococcal Antitumor Glycoprotein on Human Epidermoid Carcinoma A431 Cells. Involvement of Dephosphorylation of Epidermal Growth Factor Receptor // Cancer. Res.. — 2001. — С. 6151-6157.
    22. ↑ Yoshida J., Takamura S., Nishio M. Characterization of a streptococcal antitumor glycoprotein (SAGP) // Life Sciences. — 1998. — С. 1043–1053.
    23. ↑ Bobek V., Pinterova D., Kolostova K., Boubelik M., Douglas J., Teyssler P., Pavlasek J., Kovarik J. Streptokinase increases the sensitivity of colon cancer cells to chemotherapy by gemcitabine and cis-platine in vitro // Cancer. Lett.. — 2006. — С. 95-101.
    24. ↑ Zacharski L.R., Ornstein D.L., Gabazza E.C. D'Alessandro-Gabazza CN, Brugarolas A, Schneider J. Treatment of malignancy by activation of the plasminogen system // Semin. Thromb. Hemost.. — 2002. — С. 5-18.
    25. ↑ Zacharski L.R., Sukhatme V.P. Coley's toxin revisited: immunotherapy or plasminogen activator therapy of cancer? // J. Thromb. Haemost.. — 2005. — С. 424-427.
    26. ↑ MBVax Bioscience revives century-old "Coley's Toxins" cancer therapy Townsend Letter for Doctors and Patients – Find Articles, Townsend Letter for Doctors and Patients. Архивировано из первоисточника 10 июля 2012. Проверено 10 ноября 2007.
    27. ↑ MBVax Bioscience. Проверено 10 ноября 2007. Архивировано из первоисточника 5 октября 2012.
    28. ↑ Borrell, Brendan. Cancer and the bacterial connection, The Los Angeles Times (18 февраля 2008). Проверено 17 февраля 2008.
    29. ↑ New York Times: article on Pfizer and Coley Pharmaceutical Group, 5 October 2005
    30. ↑ Higuchi Y., Kigoshi S., Shoin S. Comparative experiments with hemolytic streptococcus and its anticancer preparations (OK-431 and OK-432) for their cytolytic activity // Jpn. J. Exp. Med. — 1980. — С. 7-12.
    31. ↑ J. Journ. Pharmacol. Experimental anticancer studies. Part 14. Anticancer experiment with streptococcus hemolyticus in immunized animals // J. Journ. Pharmacol. — 1961. — С. 119-125.
    32. ↑ Luzzatto C., Midrio P., Tchaprassian Z., Guglielmi M. Sclerosing treatment of lymphangiomas with OK-432 // Arch. Dis. Child.. — 2000. — С. 316-318..
    33. ↑ Okazaki T., Iwatani S., Yanai T., Kobayashi H., Kato Y., Marusasa T., Lane G.J., Yamataka A. Treatment of lymphangioma in children: our experience of 128 cases // J. Pediatr. Surg.. — 2007. — С. 386-389..
    34. ↑ Nose M., Wang B., Istukaichi H., Yukawa O., Hayata I., Yamada T., Ohyama H. Rescue of lethally irradiated mice from hematopoietic death by pre-exposure to 0.5 Gy X rays without recovery from peripheral blood cell depletion and its modification by OK-432 // Radiat. Res.. — 2001. — С. 195-204.
    35. ↑ Olsnes C., Olofsson J., Aarstad H.J. MAPKs ERK and p38, but not JNK phosphorylation, modulate IL-6 and TNF-α secretion following OK-432 in vitro stimulation of purified human monocytes // Scand. J. Immunol.. — 2011. — С. 114-125.
    36. ↑ Olsnes C., Stavang H., Olofsson J., Aarstad H.J. TNF-alpha is secreted by monocytes in transit to become macrophages, but not by peripheral blood monocytes, following OK-432 (lyophilized S. pyogenes) stimulation // Scand. J. Immunol.. — 2007. — С. 684-693.
    37. ↑ Шилов Ю.И. Иконникова Г.В. Шилов С.Ю. (2004). «ОЦЕНКА ИММУНОМОДУЛИРУЮЩЕГО ДЕЙСТВИЯ ЖИВОГО ШТАММА БЕТА-ГЕМОЛИТИЧЕСКОГО СТРЕПТОКОККА ГРУППЫ А». Вестник Уральской медицинской академической науки (4): 26.
    38. ↑ 38,038,1Черешнев В.А, Морова А.А. Если друга считать врагом. Предостережения клинической эндоэкологии. — 2006. — В. 10. — С. 64-68.
    39. ↑ Черешнев В.А., Морова А.А., Рямзина И.Н. (2006). «Биологические законы и жизнеспособность человека (метод многофункциональной восстановительной биотерапии):научное издание:2-е изд., перераб. и доп.». Пермь, монография: 216.
    40. ↑ Вагнер Е. А., Коробов В. П., Морова А. А.,Черешнев В. А., Бурдуков П. М. (1979). «Уровень антистрептококковых антител в крови больных злокачественными новообразованиями». Сборник научных трудов Пермского медицинского института «Сосудистая система в норме, эксперименте и патологии»: 87.
    41. ↑ Вагнер Е.А., Черешнев В.А., Морова А.А., Коробов В.П. (1992). «Эндоэкологические аспекты возникновения СПИД, сердечно-сосудистых и онкологических заболеваний человека». Уральское отд. АН России, Екатеринбург, журнал Экология 3: 22.

    ru.solar.wikia.com

    Универсальная противораковая вакцина помогла первым пациентам

    Схема устройства липоплекса: нуклеиновая кислота (синий цвет), стабилизирована двухслойными липидными мембранами

    Immunodeficiency ed. by Krassimir Metodiev, 2012

    Немецкие ученые разработали методику получения универсальной противораковой вакцины. В ходе ранних клинических испытаний она успешно остановила рост опухолей у трех пациентов с меланомой. Результаты исследования опубликованы в Nature.

    Сотрудники Университета Иоганна Гутенберга с коллегами из других научных центров создали вакцину, которая содержит РНК, кодирующую опухолевые антигены. Чтобы нуклеиновая кислота не разрушалась под действием внеклеточных рибонуклеаз, ее поместили в липоплексы (липидные наночастицы). Испытания комплексов РНК-липоплекс с различными свойствами показали, что для их стабильной доставки к клеткам-мишеням достаточно отрегулировать общий электрический заряд наночастицы без функционализации дополнительными молекулами.

    Эксперименты на мышах показали, что после внутривенного введения РНК-липоплексы эффективно поглощаются дендритными клетками (клетки иммунной системы, которые анализируют поступающие в организм антигены и информируют о них Т-лимфоциты, обеспечивающие специфический иммунный ответ) и макрофагами. В ответ эти клетки выделяют интерферон-альфа и активируют цитотоксические Т-лимфоциты и Т-лимфоциты памяти. В эксперименте с раковыми антигенами и имплантированными под кожу опухолями вакцина полностью предохранила мышей от развития рака, в то время как все непривитые животные умерли в течение 30 дней.

    Механизм действия вакцины

    Lena M. Kranz et al., Nature, 2016

    После подтверждения эффективности и безопасности вакцины у мышей и макак-крабоедов исследователи перешли к первой фазе клинических испытаний, в которой проверяется безопасность возрастающих доз препарата. Ученые вводили вакцину, содержащую РНК опухолевых антигенов (NY-ESO-1, MAGE-A3, тирозиназы и TPTE) трем пациентам с метастатической меланомой. Терапию начали с минимальной дозировки, после чего четырежды вводили несколько большие, но не максимальные дозы с недельными интервалами. Испытания еще не завершены, однако предварительные результаты подтверждают эффективность препарата даже в низких дозах.

    В частности, у первого пациента наблюдалось уменьшение объема метастазов в грудных лимфоузлах. Второму участнику метастазы перед вакцинацией удалили хирургически, и в течение семи месяцев наблюдения рецидива опухоли не наступило. У третьего пациента остановился рост восьми метастатических опухолей в легких.

    Исследователи отмечают, что производить вакцины из РНК-липоплексов можно достаточно быстро и недорого, при этом они могут содержать практически любые опухолевые антигены, обеспечивая универсальную иммунотерапию рака.

    Ранее в 2016 году американские исследователи сообщили об успешной терапии устойчивых к другим методам лечения лейкозов с помощью генетически модифицированных лимфоцитов с химерными антигенными рецепторами. У большинства пациентов наблюдалось полное излечение.

    Олег Лищук

    nplus1.ru

    Противораковая вакцина Вильяма Коли - это... Что такое Противораковая вакцина Вильяма Коли?

    Противораковая вакцина Вильяма Коли — вакцина на основе бактерий Streptococcus pyogenes группы А и Serratia marcescens, которая была создана в конце 19-го века американским хирургом-онкологом Вильямом Коли[en] (1862—1936) для лечения людей больных онкологическими болезнями. Также известна как «вакцина Коли»[1] «токсины Коли» или «флюиды Коли»[2][1][3][4].

    При жизни Вильяма Коли вакцина не была признана и на некоторое время оказалась забытой. В настоящее время данное направление возрождается, относится к области иммунотерапии рака и активно развивается в ряде стран (США, Германия, Япония). В Японии, после более чем 30 лет клинических испытаний, была выпущена вакцина под названием «пицибанил», которая представлена бактериями Streptococcus pyogenes группы А (особый не патогенный штамм Su). Было обнаружено, что вакцина вызывает в организме у человека активацию натуральных киллеров (атакуют опухолевые клетки) и выработку фактора некроза опухоли и интерлейкинов-12. Японский вариант вакцины оказался эффективным в лечении ряда форм рака (рак легких, рак молочной железы, рак щитовидной железы, рак желудка и, особенно, при лимфангиоме — доброкачественная опухоль).[5]

    История открытия

    В 1891 году Вильям Коли установил взаимосвязь между перенесенной инфекцией (скралатина, рожа), вызванной S. pyogenes и регрессией опухоли у пациентов[6][7]. В 1893 году он создал вакцину на основе S. pyogenes для лечения больных саркомой. Позже в состав вакцины были добавлены бактерии S. marcescens, которые усилили её противораковые свойства[8]. Несмотря на большое количество сообщений об успешном применении «противораковой вакцины», она подверглась огромной критике, потому что многие доктора не верили результатам Вильяма Коли. Данная критика вместе с развитием радиотерапии и химиотерапией привели к постепенному прекращению использования вакцины. Тем не менее, современная иммунология доказала, что принципы Вильяма Коли были верными и некоторые формы рака чувствительны к усиленной иммунной системе организма, что и являлось причиной излечения больных. Поскольку, в настоящее время, исследования в данной области ведутся очень активно, Вильям Б. Коли, получил титул «Отца иммунотерапии»[9].

    Механизмы действия вакцины

    Фактор некроза опухоли и интерлейкины

    Одним из активных компонентов вакцины считаются липополисахариды клеточной стенки бактерий, которые вызывают гипертермию. Это приводит к активации лимфоцитов и выделению факторов некроза опухоли[10]. Тсунг и Нортон сообщают, что активным веществом, которое вырабатывает сам организм в ответ на введение вакцины, скорее всего являются интерлейкины-12[11].

    Патоген-ассоциированный молекулярный паттерн (ПАМП)

    Недавно было предложено иммунологическое объяснение, которое объединило данные иммунологических исследований и случаи спонтанного выздоровления от рака и эпидемиологические данные, которые указывают на то, что вероятность развития рака снижается после перенесенной инфекции[12]. Согласно данной гипотезе антигены, продуцируемые некоторыми видами бактерий, вирусов и грибов, но не человеческой тканью, называются «патоген-ассоциированным молекулярным паттерном», который запускает активацию и дифференцировку дендритных клеток (которые презентируют малигнантные клетки). Считается, что среди таких ПАМП основную роль играет неметелированный сайт CpG, обнаруженный в бактериальной ДНК. Данный сайт распознается Толл-подобными рецепторами-9, что вызывает сильную стимуляцию активности Т-помощников, которые усиливают имунный ответ и способствуют уничтожению малигнантных (раковых) клеток.

    Доступность

    Канадская биотехнологическая компания MBVax Bioscience производит «флюиды Коли» для доклинических и клинических исследований[13][14]. Частная компания Coley Pharmaceutical Group провела клинические испытания с использованием некоторых фрагментов ДНК-последовательностей бактерий, которые могут отвечать за противораковый эффект «вакцины Коли». Данная компания была куплена компанией Pfizer в декабре 2008 года[15]. Компании Pfizer и Sanofi-Aventis заинтересованы в разработке современного состава «вакцины Вильяма Коли»[16].

    См. также

    Ссылки

    1. ↑ 1 2 Taniguchi Y, Nishizawa T, Kouhchi C, et al. (2006). «Identification and characterization of lipopolysaccharide in acetic acid bacteria». Anticancer Res. 26 (6A): 3997–4002. PMID 17195448.
    2. ↑ Thotathil Z, Jameson MB (2007). «Early experience with novel immunomodulators for cancer treatment». Expert opinion on investigational drugs 16 (9): 1391–403. DOI:10.1517/13543784.16.9.1391. PMID 17714025.
    3. ↑ Coley Toxins Detailed Scientific Review at mdanderson.org
    4. ↑ [1] Pick, Thomas Pickering, "Surgery, " Longmans, Green and Company, 1899, Pages 250—251. Retrieved August 3, 2010.
    5. ↑ YOSHIKI RYOMA, YOICHIRO MORIYA, MASATO OKAMOTO, ISAO KANAYA, MOTOO SAITO and MITSUNOBU SATO et al. (2004). «Biological Effect of OK-432 (Picibanil) and Possible Application to Dendritic Cell Therapy». Anticancer Res. 24: 3295-3302. PMID 15515424.
    6. ↑ «The Cancer Chronicles», Ralph W. Moss, PH.D., 1996
    7. ↑ Coley WB. Annals of Surgery 1891;14:199-200
    8. ↑ McCarthy EF (2006). «The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas». The Iowa orthopaedic journal 26: 154–8. PMID 16789469.
    9. ↑ (2006) «The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas». The Iowa orthopaedic journal 26: 154–8. PMID 16789469.
    10. ↑ Proposed Mechanism of Action. Проверено 10 ноября 2007.
    11. ↑ Tsung K, Norton JA (2006). «Lessons from Coley's Toxin». Surgical oncology 15 (1): 25–8. DOI:10.1016/j.suronc.2006.05.002. PMID 16814541.
    12. ↑ Hobohm U, Grange J, Stanford J: [2] Pathogen associated molecular pattern in cancer immunotherapy, Critical Reviews Immunology (2008) Vol 28, 95-107
    13. ↑ MBVax Bioscience revives century-old "Coley's Toxins" cancer therapy Townsend Letter for Doctors and Patients – Find Articles, Townsend Letter for Doctors and Patients. Проверено 10 ноября 2007.
    14. ↑ MBVax Bioscience. Архивировано из первоисточника 5 октября 2012. Проверено 10 ноября 2007.
    15. ↑ Borrell, Brendan. Cancer and the bacterial connection, The Los Angeles Times (18 февраля 2008). Проверено 17 февраля 2008.
    16. ↑ New York Times: article on Pfizer and Coley Pharmaceutical Group, 5 October 2005

    dic.academic.ru

    Разработана универсальная противораковая вакцина

    Разработана универсальная противораковая вакцинаСобытия

    Ученые создали вакцину, которая будет "обучать" тела больных раком пациентов самостоятельно находить и уничтожать опухолевые клетки. Терапия, которая направлена на обнаружение молекул 90 процентов раковых заболеваний, может стать универсальной инъекцией, которая позволит иммунной системе пациента бороться с практически любым видом рака, в то числе и с раком молочной железы, и с раком предстательной железы.

    Предварительные результаты ранних клинических испытаний показали, что вакцина может вызвать иммунную реакцию у больного человека, а также повернуть вспять течение болезни. Ученые планируют проводить больше испытаний на людях, чтобы доказать, что созданный ими метод может быть эффективным против целого ряда различных видов рака.

    Они полагают, что терапия может быть использована для борьбы с небольшими опухолями, найденными на ранних стадиях, а также ее можно применять и пациентам, которые прошли другие способы лечения, такие как хирургия, с целью предотвращения ремиссии.

    Раковые клетки, как правило, не удаляются иммунной системой человека, потому как она не признает их за нечто опасное. Хотя иммунная система обычно атакует инородные клетки, такие как бактерии, она не трогает раковые клетки, потому что опухоли – это собственные клетки человека, в работе которых произошел сбой.

    Однако, ученые обнаружили, что молекула, называемая MUC1 и находящаяся в больших количествах на поверхности раковых клеток, может быть использована для того, чтобы помочь иммунной системе обнаружить опухоли. Новая вакцина, разработанная фармацевтической компанией Vaxil Biotheraputics вместе с исследователями из Тель-Авивского университета, использует часть указанной молекулы в работе иммунной системы таким образом, что она может выявлять и уничтожать раковые клетки.

    "После 2-4 доз вакцины практически у всех пациентов началась активная работа иммунной системы по уничтожению раковых клеток. При этом полный курс составляет 12 доз", - говорится в заявлении фармацевтической компании. "Лишь у нескольких людей не наблюдались первые признаки клинической эффективности".

    Результаты еще не были официально опубликованы, но если дальнейшие испытания окажутся успешными, то вакцина будет доступной в течение шести лет. В терапевтической медицине вакцина в первую очередь предназначена для пациентов, которые уже страдают от рака, таким образом, их организм получает возможность справиться с болезнью. О профилактике заболевания речь пока не идет.

    В раковых клетках содержится очень много молекул MUC1, которые, как считается, помогают опухоли расти. Здоровые клетки человека тоже содержат эти молекулы, но их слишком мало, чтобы спровоцировать ответ иммунной системы после вакцинации. Когда иммунная система пациентов, получивших вакцину, встречает раковые клетки, в которых концентрация молекулы очень высока, это заставляет их атаковать и убивать опухоль.

    Так как молекула MUC1 содержится в клетках в 90 процентов случаев болезни, исследователи полагают, что вакцина может использоваться для борьбы с ростом и распространением широкого спектра раковых заболеваний. В медицинском центре Хадасса в Иерусалиме десять пациентов, страдающих множественной миеломой, формой рака крови, в настоящее время получили вакцину.

    Семь пациентов уже прошли курс лечения, и, как отметили специалисты, у каждого из них иммунная система начала работать в несколько раз активнее, чем она работала до вакцинации. Они подчеркнули, что после лечения у троих пациентов не обнаружилось видимых следов рака.

    Другие специалисты пока с осторожностью относятся к вакцине, говоря о том, что для одобрения к массовому использованию она должна пройти дальнейшие испытания. В настоящее время существует ряд других терапевтических вакцин против рака, которые проходят испытания, но успех у них очень ограниченный.

    Полученные результаты являются предварительными, впереди еще очень много работы для того, чтобы доказать, что именно эта вакцина является безопасной и эффективной при лечении раковых заболеваний.

    Перевод: Баландина Е. А.

    www.infoniac.ru


    Смотрите также




г.Самара, ул. Димитрова 131
[email protected]