Забыли пароль?
Регистрация
О компании
Доставка
Каталог товаров  
Контакты
Задать вопрос
Как сделать заказ
Рекомендации
Партнёрам
Получить консультацию

10. Антибиотики резерва, их практическое значение. Антибиотики резерва


Бактериям объявили войну. ВОЗ провела реформу в лечении антибиотиками | Наука | Общество

Недавно ВОЗ провела серьёзную реформу в лечении антибиотиками. В чём суть новых изменений? Какие уроки из них должны вынести практические врачи?

Новые рекомендации по антибиотикам включены в Примерный перечень основных лекарственных средств ВОЗ. За последние 40 лет это самый большой и серьёзный пересмотр, касающийся этих препаратов. Если говорить совсем кратко о реформе, то в ней врачам детально объясняют, какие антибиотики нужно применять в лечении обычных инфекций, а какие следует оставить для наиболее тяжёлых случаев.

Взгляд эксперта

О том, почему необходимость такой реформы назрела и какова нынешняя ситуация с антибиотикотерапией, нам рассказывает главный внештатный специалист Минздрава России по клинической микробиологии и антимикробной резистентности, а также президент Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ), член-корреспондент РАН, ведущий специалист по этой проблеме в стране Роман Козлов. Являясь руководителем Сотрудничающего центра ВОЗ по укреплению потенциала в сфере надзора исследований антимикробной резистентности, он принимал самое прямое участие в разработке реформы антибиотиков.

«Россия, как и многие другие страны, расценивает устойчивость микробов к антибиотикам как угрозу национальной безопасности, а ВОЗ – как угрозу глобальной стабильности, – говорит Роман Сергеевич. – Сегодня уже есть некоторые виды бактерий, против которых эффективны всего один-два препарата, их называют «антибиотиками последней надежды». Но и к ним может вырабатываться резистентность, что приводит к большим сложностям в лечении инфекций, а иногда и к смерти пациентов.

Альтернативные антибиотикам подходы к терапии опасных инфекционных заболеваний точно не помогут. Речь о внутрибольничных инфекциях – в отделениях, где часто используют антибиотики, выживают самые устойчивые бактерии. Нам жизненно необходимы новые лекарства против них. Важный аспект: ВОЗ призывает объединить усилия государств и фармацевтических компаний по созданию таких антибиотиков. К счастью, в нашей стране это понимают и стимулируют бизнес на их разработку.

Мы проводим большую работу среди врачей, чтобы они правильно назначали антибиотики. Но крайне важно правильно применять их и самим пациентам. Если препарат назначен на 7 дней, столько и нужно пить, ни днём меньше, даже если вы чувствуете, что уже вылечились. Самостоятельно укороченный курс лечения – классический способ отбора бактерий, не чувствительных к антибиотикам: в таких условиях выживают самые устойчивые к лекарству бактерии, и они передают эти свойства следующим поколениям микробов. Когда они снова вызовут инфекцию у этого же человека или его родственников, лечить её будет гораздо труднее. Очень важно чётко соблюдать кратность и условия приёма антибиотиков, указанные в инструкции. Написано пить препарат до еды, после или вместе с едой, исполняйте, это влияет на его эффективность. Категорически не рекомендую принимать антибиотики самостоятельно или по информации в Интернете. Я против рекомендаций провизоров, это должен делать только врач – очень много тонкостей и сложностей, которые может учесть лишь он. Ни в коем случае не используйте оставшиеся от прошлого лечения препараты с истекшим сроком годности».

Чёрный список

Реформа антибиотикотерапии готовилась долго, и её выходу предшествовала публикация списка из 12 бактерий, для борьбы с которыми срочно требуются новые антибиотики. По мнению экспертов ВОЗ, именно они представляют сегодня главную угрозу для здоровья человека. В списке есть бактерии, которые устойчивы к действию сразу нескольких антибиотиков. Они способны вырабатывать всё новые способы и механизмы сопротивления против таких лекарств. А во‑вторых, они могут вместе со своими генами передавать эти качества другим бактериям. Благодаря такому взаимообмену число устойчивых к антибиотикам микроорганизмов будет расти веерообразно. 12 опасных бактерий были разделены на три группы, в зависимости от степени угрозы, которую они представляют.

Самые опасные, по мнению ВОЗ, бактерии, против которых скоро могут перестать действовать антибиотики

Название Устойчивость
1‑я группа приоритетности – самый высокий риск развития устойчивых бактерий
Acinetobacter baumannii к карбапенемам
Pseudomonas aeruginosa к карбапенемам
Enterobacteriaceae к карбапенемам, вырабатывают БЛРС
2‑я группа приоритетности – высокий риск развития устойчивых бактерий
Enterococcus faecium к ванкомицину
Staphylococcus aureus к метициллину, умеренно чувствительны или устойчивы к ванкомицину
Helicobacter pylori к кларитромицину
Campylobacter spp. к фторхинолонам
Salmonellae к фторхинолонам
Neisseria gonorrhoeae к цефалоспоринам, фторхинолонам
3‑я группа приоритетности – средний риск развития устойчивых бактерий
Streptococcus pneumoniae к пенициллину
Haemophilus influenzae к ампициллину
Shigella spp. к фторхинолонам

Суть реформы антибиотиков

Впервые эксперты ВОЗ разбили все антибиотики на три категории. В соответствии с принятой на Западе практикой каждой категории дано яркое символическое название, которое приводят прописными буквами. По-русски это выглядит так – доступ, наблюдение и резерв. Честно говоря, названия для нас получились не очень удачные, не очень говорящие, особенно для двух первых категорий. Почему? Это станет понятно позже.

Главное, что реформа использования антибиотиков призвана обеспечить наличие необходимых препаратов и, наверно, самое важное – способствовать правильному назначению этих препаратов для лечения той или иной конкретной инфекции. 

Именно это, как ожидают эксперты, улучшит результаты терапии, замедлит развитие бактерий, устойчивых к лекарствам, и сохранит эффективность антибиотиков «последней надежды», необходимых тогда, когда все остальные препараты уже не действуют. Пока это относится только к антибиотикам, применяемым для лечения 21 наиболее распространённой общей инфекции. Если реформа сработает, её распространят и на другие инфекционные болезни.

На 1‑й, 2‑й, 3‑й рассчитайсь!

Первая категория, которая называется ДОСТУП, включает антибиотики первой линии – именно их нужно использовать для лечения широко распространённых инфекций в первую очередь (см. таблицу 1). Если они будут неэффективны, то можно назначать другие препараты из этой же или второй категории. Однако если не будут работать и препараты из группы наблюдения (это вторая категория), наступает роль лекарств из третьей категории – из резерва.

Таблица 1. Первая категория

Антибиотики доступа Например
Бета-лактамы (Beta-lactam medicines)
Амоксициллин (amoxicillin) Цефотаксим (cefotaxime)*
Амоксициллин + клавулановая кислота (amoxicillin + clavulanic acid) Цефтриаксон (ceftriaxone)*
Ампициллин (ampicillin) Клоксациллин (cloxacillin)
Бензатина бензилпенициллин (benzathine benzylpenicillin) Феноксиметилпенициллин (phenoxymethylpenicillin)
Бензилпенициллин (benzylpenicillin) Пиперациллин + Тазобактам (piperacillin + tazobactam)*
Цефалексин (cefalexin) Прокаин-бензилпенициллин (procaine benzyl penicillin)
Цефазолин (cefazolin) Меропенем (meropenem)*
Цефиксим (cefixime)*  
Антибиотики других групп
Амикацин (amikacin) Гентамицин (gentamicin)
Азитромицин (azithromycin) Метронидазол (metronidazole)
Хлорамфеникол (chloramphenicol) Нитрофурантоин (nitrofurantoin)
Ципрофлоксацин (ciprofloxacin)* Стрептомицин (spectinomycin) (EML only)
Кларитромицин (clarithromycin)* Сульфаметоксазол + триметоприм (sulfamethoxazole + trimethoprim)
Клиндамицин (clindamycin)* Ванкомицин, оральные формы (vancomycin, oral)*
Доксициклин (doxycycline) Ванкомицин, для парентерального введения (vancomycin, parenteral)*

* Антибиотики, использование которых ограничено конкретными инфекционными заболеваниями или возбудителями.

Антибиотики из группы наблюдения (см. таблицу 2) можно применять в качестве препаратов первого выбора только для лечения ограниченного числа инфекций. Например, рекомендуется резко сократить применение ципрофлоксацина, широко используемого сейчас врачами для лечения цистита и таких инфекций верхних дыхательных путей, как бактериальные синусит или бронхит. Применение их при подобных болезнях расценивается как ошибка. Это нужно для того, чтобы не допустить дальнейшего развития устойчивости к ципрофлоксацину. Но на качестве лечения не скажется, так как есть очень неплохие антибиотики для этих инфекций из первой группы доступа.

Таблица 2. Вторая категория

Антибиотики НАБЛЮДЕНИЯ Например
Хинолоны и фторхинолоны ципрофлоксацин, левофлоксацин, моксифлоксацин, норфлоксацин
Цефалоспорины третьего поколения (с ингибитором бета-лактамазы или без него) цефиксим, цефтриаксон, цефотаксим, цефтазидим
Макролиды азитромицин, кларитромицин, эритромицин
Гликопептидные антибиотики тейкопланин, ванкомицин
Пенициллины с антипсевдомонадной активностью с ингибиторами бета-лактамазы пиперациллин + тазобактам
Карбапенемы меропенем, имипенем + циластатин
Пенемы фаропенем

Препараты третьей группы резерва (см. таблицу 3) должны рассматриваться как «антибиотики последней надежды», и использовать их можно только в самых тяжёлых случаях, когда все остальные способы лечения исчерпаны. Особенно это важно для лечения опасных для жизни инфекций, которые вызывают бактерии с множественной лекарственной устойчивостью.

Таблица 3. Третья категория

Антибиотики РЕЗЕРВА Например
Азтреонам  
Цефалоспорины 4‑го поколения цефепим
Цефалоспорины 5‑го поколения цефтаролин
Полимиксины полимиксин В, колистин
Фосфомицин (IV)  
Оксазолидиноны линезолид
Тигециклин  
Даптомицин  

Для врачей эти рекомендации столь важны, что мы советуем их вырезать и повесить в кабинете, а также внести в смартфон, чтобы они всегда были под рукой.

www.aif.ru

10. Антибиотики резерва, их практическое значение.

В процессе использования антибиотиков к ним может развиваться устойчивость микроорганизмов. Особенно быстро она возникает по отношению к стрептомицину, олеандомицину, рифампицину, относительно медленно - к пенициллинам, тетрациклинам и левомицетину, редко - к полимиксинам. Возможна так называемая перекрестная устойчивость, которая относится не только к применяемому препарату, но и к другим антибиотикам, сходным с ним по химическому строению (например, ко всем тетрациклинам). Вероятность развития устойчивости уменьшается, если дозы и длительность введения антибиотиков оптимальны, а также при рациональной комбинации антибиотиков. Если к основному антибиотику возникла устойчивость, его следует заменить другим, резервным1 антибиотиком.

Резервные антибиотики по одному или по ряду свойств уступают основным антибиотикам (обладают меньшей активностью либо более выраженными побочными эффектами, большей токсичностью или быстрым развитием резистентности к ним микроорганизмов). Поэтому их назначают лишь при устойчивости микроорганизмов к основным антибиотикам или при непереносимости последних.

Для воздействия на устойчивые штаммы микробов рекомендуются антибиотики резерва, к которым относятся прежде всего макролиды эритромицин и олеандомицин (в настоящее время, кроме лекарственных форм для приема внутрь, имеются формы парентерального введения в виде аскорбатов и фосфатов эритромицина), а также комбинированные препараты олеандомицина с тетрациклином (олететрин, сигмамицин, тетраолеан) и эритромицина с тетрациклином (адимицин). Применение эритромицина ограничено, так как к нему быстро развивается устойчивость микроорганизмов. Поэтому его относят к антибиотикам резерва и используют в тех случаях, когда пенициллины и другие антибиотики оказываются неэффективными. Назначают эритромицин внутрь (основание эритромицина) и местно. Близок к макролидам и может быть использован при лечении стафилококковых болезней, в том числе септических, линкомицин. В связи с серьезными неблагоприятными эффектами в отношении кроветворения левомицетин, как правило, относят к антибиотикам резерва,левомицетин может вызывать выраженное угнетение кроветворения, сопровождающееся ретикулоцитопенией, гранулоцитопенией и в тяжелых случаях апластической анемией, которая обычно заканчивается смертельным исходом2. Поэтому при применении левомицетина требуется регулярный контроль картины крови. Чтобы уменьшить возможность угнетения кроветворения, антибиотик следует назначать в течение возможно более короткого периода времени. Повторные курсы лечения не рекомендуются; применяется он только при неэффективности других антибиотиков. Применяют при бруцеллезе, брюшном тифе, заболеваниях, вызванных протеем. Значительной токсичностью отличаются антибиотики аминогликозидной группы: неомицин, мономицин, канамицин, гентамицин. Их назначение возможно только при исключении ряда противопоказаний и под строгим контролем. Из названных аминогликозидов наибольшее значение в наше время имеет гентамицин, широко используемый для борьбы с гнойной инфекцией. Другие же препараты назначают реже. Мономицин Фармакологическим комитетом Министерства здравоохранения РФ разрешается применять лишь для лечения кожного лейшманиоза

Гликопептид ванкомицин так же относится к группе резерва вследствие своей токсичности (в особенности, сильнейшая ототоксичность).

Антибактериальный препарат группы фторхинолона — ципрофлоксацин — так же входит в группу резерва.

Одним из условий предупреждения развития устойчивых форм микроорганизмов является периодическая замена широко применяющихся антибиотиков новыми, недавно созданными или редко применяющимися. Такие препараты получили название «антибиотики резерва».

Важной задачей является создание новых препаратов антибиотиков с выраженным этиотропным действием, которые были бы активными в отношении устойчивых форм микробов и оказывали бы минимальное побочное действие на организм человека.

Серьезную проблему для практики приобретает множественная устойчивость микроорганизмов. В настоящее время намечены пути ее преодоления благодаря генетическому и биологическому анализу этого явления.

Успех антибиотикотерапии в значительной степени зависит от сочета­ния антибиотиков с веществами, стимулирующими защитные силы макроорганизма (продигиозан, лизоцим, протамин и др.).

Актуальными для клиники остаются предупреждение и лечение аллергических реакций при проведении антибактериальной терапии. 

studfiles.net

Конец прекрасной эпохи

На прошлой неделе коллектив китайских ученых опубликовал в журнале Lancet статью, в которой подвел итоги многолетних наблюдений и сообщил об открытии гена трансмиссивной устойчивости к колистину. Таким образом, сбылись мрачные прогнозы многих исследователей и мир оказался на пороге появления бактериальных инфекций, для лечения которых даже формально не существует ни одного лекарственного препарата. Как подобное могло произойти, и какие это имеет последствия для нашего общества?

Колистин, относящийся к группе полимиксинов, является «антибиотиком запаса», то есть последним средством, применяющимся при инфекциях бактериями, которые устойчивы ко всем другим агентам. Как и многие другие антибиотики, колистин был открыт еще в 1950-е. Но уже начиная с 1970-х его практически не применяли в медицине; причина проста: это очень плохой антибиотик. Почти в половине случаев он проявляет нефротоксичность (дает осложнения на почки), к тому же к этому времени уже были открыты гораздо более эффективные и удобные карбапенемы и фторхинолоны. Колистин начал применяться для лечения больных только в последние десять лет, когда из-за распространения устойчивости к карбопенемам выбора у медиков почти не осталось. 

Тем не менее, в ветеринарии колистин никогда не прекращал использоваться и до последнего времени входил в пятерку антибиотиков, применяющихся на фермах в Европе и других странах. Ученые уже давно обращали на это внимание и призывали полностью запретить применение критического для лечения людей антибиотика в сельском хозяйстве. Особую тревогу вызывала популярность колистина в Юго-Восточной Азии, где реальные масштабы оборота невозможно было отследить, тем более что потребление антибиотиков фермерами никак не регулируется законодательно.

Как работает колистин? Это вещество связывается с липидами на поверхности бактерий, что приводит к разрушению мембраны и последующей гибели клетки. До сих пор все случаи возникновения устойчивости к колистину были связаны с хромосомными мутациями, которые обычно сопровождались снижением  жизнеспособности бактерий и, соответственно, не могли закрепиться и распространиться в популяции. 

Однако недавно, во время рутинного мониторинга лекарственной устойчивости бактерий, выделяемых из образцов сырого мяса, (исследование проводилось  в южном Китае с 2011 по 2014 год), ученые заметили подозрительно сильный рост количества устойчивых изолятов. Так, в 2014 году до 21 процентов исследованных образцов свинины содержали устойчивых к колистину бактерий. Когда биологи стали разбираться с этими штаммами, оказалось, что устойчивость определяется вовсе не хромосомными мутациями, а ранее неизвестным геном mcr-1. 

Сравнение последовательности гена с последовательностями в базе данных позволило предположить, что он кодирует фермент, модифицирующий липиды бактерий так, что они теряют способность связывать антибиотик. Ген находится на плазмиде – отдельной молекуле ДНК, которая может свободно перемещаться между разными штаммами и даже родственными видами бактерий, придавая им дополнительные свойства. Наличие плазмиды никак не влияет на самочувствие бактерий и она стабильна даже при отсутствии колистина в среде. 

Вывод авторов неутешителен: осталось совсем немного времени, до того момента как ген распространится по всему миру и у врачей может формально не остаться никаких опций для лечения некоторых инфекций. На самом деле, опций почти что нет уже и сейчас: высокая токсичность колистина делает его применение на практике затруднительным, то же касается и других антибиотиков «последнего резерва». При этом способность контролировать бактериальные инфекции с помощью антибиотиков является краеугольным камнем нашей медицины: без них невозможно себе представить ни химиотерапию рака, ни пересадку органов, ни сложные хирургические операции – все они заканчивались бы тяжелыми осложнениями.

Фотография: Jeremy Brooks / flickr.com

Почему они не действуют

Несмотря на кажущееся разнообразие антибиотиков, большинство из них попадает в три основные группы в зависимости от мишени: ингибиторы синтеза клеточной стенки бактерий (бета-лактамы), антибиотики, ингибирующие синтез белка (тетрациклины, аминогликозиды, макролиды) и фторхинолоны, ингибирующие синтез ДНК бактерий. 

Первый антибиотик, спасший миллионы жизней во время Второй мировой войны – пенициллин – относится к группе бета-лактамов. Успех пенициллина был таким, что его не только продавали без рецепта, но и, например, добавляли в зубные пасты для профилактики кариеса. Эйфория ушла, когда в конце 1940-х годов многие клинические изоляты золотистого стафилококка перестали реагировать на пенициллин, что потребовало создания новых химических производных пенициллина, таких как ампициллин или амоксициллин. 

Основным источником резистентности стало распространение генов бета-лактамазы: фермента, расщепляющего ядро молекулы пенициллина. Эти гены не появились заново, ведь плесневые грибки, производящие пенициллин и бактерии сосуществовали друг с другом в природе миллионы лет. Впрочем, полностью синтетические фторхинолоны, появившиеся в клинической практике в начале 1980-х, уже через десять лет повторили судьбу пенициллина (сейчас уровни устойчивости к фторхинолонам в некоторых группах клинических изолятов доходят до 100 процентов за счет распространения хромосомных мутаций и переносимых факторов устойчивости, таких как транспортеры, откачивающие молекулы лекарств наружу). 

На протяжении последних 60 лет проходило соревнование химиков-синтетиков и бактерий: на рынок выходили новые и новые группы бета-лактамных антибиотиков (цефалоспорины нескольких поколений, монобактамы, карбапенемы), устойчивые к расщеплению, а бактерии обзаводились бета-лактамазами нового класса со все более широким спектром действия. В ответ на распространение генов бета-лактамаз были разработаны ингибиторы этих ферментов: бета-лактамы, которые «застревают» в активном центре фермента, инактивируя его. Комбинации антибиотиков-бета-лактамов и ингибиторов бета-лактамазы, такие как амоксиклав (амоксициллин-клавулонат) или пиперациллин-тазобактам сейчас являются одними из основных назначаемых средств в клинической практике. Эти комбинации даже сейчас являются зачастую более эффективными, чем бета-лактамы последнего поколения. Тем не менее, помимо эволюции бета-лактамаз, которая делает их нечувствительными для конкретного ингибитора, бактерии освоили и другой трюк: сам фермент биосинтеза клеточной стенки, с которым связывается бета-лактам, может стать недоступным для антибиотика. Именно такая форма устойчивости наблюдается у печально известного MRSA (метициллин-устойчивого золотистого стафилококка). Такие инфекции не являются неизлечимыми, но требуют применения более токсичных и менее эффективных препаратов.

Откуда берется устойчивость

MRSA относится к классу бактерий, вызывающих так называемые нозокомиальные, или «больничные» инфекции. Именно они вызывают такое беспокойство у врачей, уже сейчас унося десятки тысяч жизней каждый год в США и Европе и значительно повышая стоимость лечения. Больницы, особенно реанимационные отделения, представляют собой идеальное место для размножения и отбора супер-устойчивых бактерий. Человек, попадающий в реанимацию, обладает ослабленным иммунитетом и требует неотложного вмешательства, поэтому там применяются самые мощные препараты максимально широкого спектра действия. Применение таких лекарств вызывает отбор бактерий, устойчивых сразу ко многим классам антибиотиков.

Микробы обладают способностью выживать на самых различных поверхностях, включая халаты, столы, перчатки. Катетеры и аппараты ИВЛ являются стандартными «воротами» для больничных пневмоний, заражения крови, инфекций мочеполовой системы. Причем MRSA далеко не самый страшный больничный патоген: он относится к группе грам-положительных бактерий, а значит имеет толстую клеточную стенку, в которую хорошо проникают молекулы разных веществ. Например, ванкомицин. Настоящий ужас у врачей вызывают грам-отрицательные Escherichia coli, Pseudomonas aeruginosa и Acinetobacter baumannii: у этих бактерий клеточная стенка укрыта липидной мембраной, в которую вещества попадают через узкие каналы. Когда бактерия чувствует присутствие антибиотика, она снижает количество таких каналов, что сразу же понижает эффективность лечения; к этому надо добавить переносимые на плазмидах транспортеры, которые откачивают наружу чудом попавшие внутрь клетки молекулы лекарства, и гены бета-лактамаз (гены устойчивости обычно переносятся комплексами, что дополнительно усложняет борьбу с бактериями). Именно для борьбы с такими инфекциями колистин зачастую оставался последним доступным врачам средством.

Тем не менее, как показывает практика, внедрение адекватных процедур контроля внутри больниц (тщательная проверка назначений, сложные процедуры гигиены при всех контактах, деконтаминация всех поверхностей и так далее) позволяет ограничить или даже снизить уровень количество устойчивых бактерий. Это связано с тем, что для бактерии устойчивость к антибиотику имеет свою энергетическую цену. В отсутствие давления отбора устойчивые микроорганизмы не выдерживают конкуренции со своими более быстрорастущими родственниками. К сожалению, такие стандарты медицины доступны только в некоторых больницах в развитых странах.

Фотография: Ben Scicluna / flickr.com

Почему так мало новых веществ

Большинство из применяемых сейчас препаратов были разработаны в 1950-1970-х годах, после чего разработка почти прекратилась на три десятилетия. Благодатная «золотая жила» — изучение почвенных бактерий-стрептомицетов, давшее почти все известные классы антибиотиков – почти истощилась: новые исследования давали только уже открытые вещества, а технологий и ресурсов для проведения масштабных скринингов библиотек химических веществ у лабораторий не было. Но дело далеко не только в этом. Отсутствие новых антибиотиков это следствие настоящего «совершенного шторма» совпавших причин, прежде всего экономических. Во-первых, новые антибиотики, в отличие от каких-нибудь иммуномодуляторов, нужны относительно небольшому числу пациентов, причем живут эти пациенты преимущественно (но не только!) в бедных странах. Во-вторых, курс лечения антибиотиком занимает несколько недель, а не годы, как у, скажем, гипотензивных средств. В-третьих, устойчивость может сделать дорогой препарат нерентабельным уже через несколько лет после начала применения. В общем, на них не заработаешь.

Сейчас правительства разных стран пытаются найти экономические стимулы, чтобы вернуть большие компании на рынок антибиотиков: это может быть как снижение затрат на разработку (налоговые льготы), так и увеличение выгоды (например, государственные обязательства на закупку). В то же время все больше ученых занимается исследованиями сосуществования бактерий друг с другом, антибактериальных веществ и механизмов устойчивости. К сожалению, проблема устойчивости является типичной проблемой с отложенными последствиями: адекватность или недостаточность предпринятых мер становится очевидна только спустя длительное время.

При чем здесь фермеры

Именно применение колистина в сельском хозяйстве стало решающим факторов в возникновении трансмиссивной (передающейся) устойчивости к нему. Сразу после открытия антибиотиков, в те же 1950-е годы, фермеры выяснили, что ежедневное применение суб-терапевтических доз (это значит, что доза чуть ниже, чем так, которая применялась бы в случае заболевания) в животноводстве позволяет аж на 20 процентов увеличить прирост веса в пересчете на потребленное количество корма. Причины этого эффекта до сих пор не ясны, но видимо как-то связаны со сложным сообществом бактерий в кишечнике животного и их взаимодействием с иммунитетом хозяина. Снижая количество потенциально болезнетворных бактерий в кишечнике, антибиотики уменьшают уровень воспаления и активации иммунной системы животного, уменьшая энергетические затраты. Кроме того, бактерии напрямую потребляют часть поступающих с пищей калорий (тем самым уменьшая количество калорий, достающееся самому животному). 

Помимо ускоренного набора веса, интенсификация животноводства потребовала включения антибиотиков в рацион для профилактики всевозможных болезней скота и птиц. Несмотря на общественное внимание к проблеме с каждым годом уровень использования антибиотиков в сельском хозяйстве возрастает, причем 90 процентов вещества идет не на лечение болезней, а как добавка в корм и стимулятор роста. Вместе с отходами жизнедеятельности, антибиотики попадают в сточные воды, вызывая отбор устойчивых патогенов по всем регионе.

У читателя это может вызвать удивление, но даже в развитых странах (США, Канада, ЕС) фермеры используют для своих целей вовсе не пенициллин, а антибиотики последних поколений. Например, в США 72 процента применяемых фермерами антибиотиков являются «медицински значимыми», то есть важными для лечения людей. 

Фотография: _EviL_ / flickr.com

На настоящий момент только в Европейском Союзе полностью запрещено применение антибиотиков для ускорения набора веса животных (с 2006 года), что, разумеется, потребовало введения протекционистских мер в сельском хозяйстве. Тем не менее, антибиотики по-прежнему широко используются в профилактических целях. В США использование цефалоспоринов в сельском хозяйстве ограничили только с 2012 года. Но, к сожалению, запрет на применение антибиотиков в животноводстве в одной стране никак не препятствует проникновению генов устойчивости из других стран, где подобные запреты не действуют.

Вообще говоря, интенсивное животноводство без применения антибиотиков возможно, но требует высокого уровня контроля и организации производства, что делает его еще более дорогим. В качестве альтернатив антибиотикам предлагается применение пробиотиков – культур «полезных» бактерий, и веществ, стимулирующих их рост для нормализации кишечной микрофлоры, вакцинация или даже использование бактериофагов.

Существуют ли альтернативы

В 2011 году американское агентство перспективных научных исследований при министерстве обороны (DARPA), известное поддержкой самых «фантастических» научных проектов, объявило о разработке принципиально нового механизма лечения бактериальных инфекций, основанного на использовании «наночастиц» с пришитыми короткими РНК и даже «нанороботов», призванных распознавать и уничтожать «любых» бактерий. 

Военных можно понять: в полевых условиях трудно организовать адекватные процедуры, и возвращающиеся из Ирака или Афганистана раненые солдаты часто привозили с собой трудноизлечимые инфекции. Совсем недавно DARPA поддержало проект «стимулирования механизмов защиты хозяина» — предполагается, что если разобраться в механизмах природного иммунитета (почему одни люди заражаются, а другие нет) можно защитить любого человека от инфекции (даже неизвестной). Подобные исследования, безусловно, не лишены смысла: по мнению иммунологов, именно степень реакции иммунной системы на патоген (вирус или бактерию) определяет исход течения болезни. Слишком сильный ответ («цитокиновый шторм») разрушает здоровые ткани, а слишком слабый – недостаточен для уничтожения возбудителя.

К сожалению, мы все еще недостаточно хорошо понимаем, как работает иммунная система и вряд ли в этой области можно ждать быстрых успехов. С другой стороны, классические вакцины, разработанные против конкретной бактерии, доказали свою эффективность, позволив искоренить многие страшные болезни в течение XX века. А вакцинация скота против распространенных болезней позволила бы сократить применение антибиотиков в сельском хозяйстве.

Фотография: onnola / flickr.com

Бактериофаги (с греческого «пожирающие бактерий»), или вирусы бактерий, были открыты почти 100 лет назад французским врачом канадского происхождения д’Эрелем. Он же стал первым применять бактериофагов в лечении инфекций. Несмотря на огромный (поначалу) общественный интерес, связанный с большими потерями от заражения ран и тифа в Первой мировой войне, добиться значительных успехов д’Эрелю не удалось: процедуры выделения вирусов, активных против конкретной культуры бактерий, их хранения и транспортировки, а также результаты самого лечения не поддавались контролю, систематизации и толком не воспроизводились. 

Тем не менее, Институт бактериофагов, основанный д’Эрелем в Тбилиси в 1933-35 годах, существует и по сей день, и является одним из немногих мест в мире, где можно получить лечение терапевтическими фагами. Рост устойчивости к антибиотикам закономерно возродил интерес к фагам: обладая узкой специализацией, они могут «пожирать» возбудителей инфекции, не затрагивая нормальных обитателей кишечника, а также разрушать недоступные для лекарств биопленки. В то же время, с точки зрения отбора, использование фагов ничем не отличается от использования таблеток: единственной мутации в белке-рецепторе на поверхности бактерии достаточно, чтобы фаг перестал на нее садиться. Да и проблемы, существовавшие еще во времена д’Эреля, никуда не делись: процедура подбора нужных фагов (вернее, их смеси) занимает по меньшей мере несколько дней, обработать можно только доступные снаружи поверхности тела или кишечник, к тому же, как оказалось, фаги эффективно размножаются только при достаточно большой концентрации бактерий, массовый лизис которых вызывает токсический шок у пациента. 

Все это не оставляет места фаговой терапии в качестве стандартного повсеместного способа лечения. Однако, в узких нишах фаги могут быть полезны, и энтузиасты применения бактериофагов не оставляют попыток придумать эффективные способы их применения. Например, целевое уничтожение резистентных бактерий с помощью системы CRISPR, нацеленной на конкретные гены устойчивости.

С похожими проблемами сталкивается и применение антибактериальных пептидов: находящиеся на вооружении животных, растений и даже человека (наша кожа покрыта антибактериальными пептидами), они показывают высокую эффективность в лабораторных условиях, но нестабильны в крови или токсичны для клеток организма человека. Большинство агентов, разрабатываемых в последнее десятилетие, до сих пор не прошло клинических испытаний.

В любом случае, использование любых сложных «персонализированных» лекарств потребует сверх-быстрой диагностики – ведь при многих бактериальных инфекциях жизненно важно начать лечение в течение первых суток или даже первых 12 часов заболевания. В этом году европейская международная программа Horizon 2020 назначила премию за создание «средства диагностики бактериальной инфекции в течение 1-2 часов» в 1 миллион евро. Британская благотворительная организация Nesta пошла еще дальше, учредив в 2014 году Longitude prize в 10 миллионов фунтов стерлингов за решение проблемы быстрой диагностики инфекций и определения спектра антибиотикоустойчивости.

Как мы видим, несмотря на все кажущееся разнообразие подходов, достойной альтернативы «низкомолекулярным ингибиторам» (именно так в ученых кругах называют традиционные антибиотики) нет, и в ближайшее время не предвидится. А значит, с устойчивостью мы будем жить и дальше. И относиться к ней надо очень серьезно. Хорошие новости заключаются в том, что похоже, «супербактерий» можно взять под контроль, но это требует усилий всего общества. Пока же оно старается эту проблему не замечать.

Фотография: George Oates / flickr.com

Дмитрий Гиляров

nplus1.ru

Антибиотики 1

6

АНТИБИОТИКИ – 1. (Кузьмин О.Б.)

Антибиотики – это продукты микробного синтеза, обладающие антимикробным действием.

В настоящее время применяются антибиотики природные и полусинтетические.

Природные антибиотики – получаемые биосинтетическим путем. Здесь живые микроорганизмы, чаще грибки, помещают в инкубационную среду, где они продуцируют антибиотики, которые затем очищают.

Полусинтетические – производятся на основе природных, где к нему добавляются химические радикалы (формула: R-х).

АНТИБИОТИКОВ ПО МЕХАНИЗМУ ДЕЙСТВИЯ.

  1. Ингибиторы синтеза микробной стенки (бактерицидное действие):

  1. пенициллины

  2. цефалоспорины бета-лактамы

  3. карбапенемы (тиенам)

  1. Ингибиторы функций цитоплазматической мембраны (бактерицидное действие):

  1. полимиксины (полимиксин М)

  2. полиеновые антибиотики (нистатин, амфотерицин Б).

  1. Ингибиторы синтеза нуклеиновых кислот (в повышенных дозах – бактерицидное действие, в среднетерапевтических – бактериостатическое).

  1. хинолоны (налидиксовая кислота, невиграмон, неграм)

  2. нитрофураны

  3. фторхинолоны (офлоксацин, перфлоксацин, ломефлоксацин, ципрофлоксацин)

  4. рифампицин (декамицин).

  1. Ингибиторы синтеза белка (бактериостатическое действие):

  1. аминогликозиды

  2. тетрациклины

  3. макролиды (эритромицин, олеандомицин)

  4. левомицетин

  5. фузидин

  6. гризеофульвин.

  1. Модификаторы клеточного метаболизма:

  1. сульфаниламиды

  2. триметоприм

  3. изониазид.

МЕХАНИЗМЫ действия антибиотиков основаны на структурных органах-мишенях микроорганизма:

  1. цитоплазматическая мембрана (ЦПМ)

  2. опорная структура (клеточная стенка)

  3. слой белка

  4. капсула.

  1. Ингибиторы синтеза стенки микроорганизма – имеют точку приложения – жесткую опорную структуру микроба, состоящую из пептидогликана муреина. Его синтез идет в 2 этапа:

  • образование из N-ацетилглюкозамина и N-ацетилмурамовой кислоты длинных мукополисахаридных цепей

  • соединение этих цепей между собой пептидными связями с помощью фермента транспептидазы, после которой структура приобретает необходимую жесткость.

Функции муреина:

ПЕНИЦИЛЛИНЫ – это ингибиторы транспептидазы, нарушают конечный этап синтеза муреина, что ведет к нарушению образования пептидных связей.

Бактерия рост

Лизис

ПЕН

Свойства пенициллинов:

  1. наиболее чувствительны к нему молодые микроорганизмы, поэтому их назначают как можно раньше

  2. действуют только на грам+ микрофлору

  3. вызывают реакцию бактериолиза в больших дозах (выход токсинов в кровь, озноб до 40 С, потеря АД, потеря сознания и т.д.).

ЦЕФАЛОСПОРИНЫ – ИМЕЮТ АНАЛОГИЧНЫЙ МЕХАНИЗМ ДЕЙСТВИЯ, но тормозят синтез опорной структуры на первых стадиях ее образования.

  1. Ингибиторы функции ЦПМ.

Мембрана микроорганизма имеет следующие функции:

  • яввляется осмотическим барьером

  • транспорт в клетку питательных веществ

  • удаление из клеток продуктов метаболизма.

Нарушение этих функций ведет к бактерицидному эффекту этих антибиотиков.

ПОЛИМИКСИНЫ – это липофильные вещества, которые накапливаются в липидном компоненте ЦПМ, что ведет к нарушению ее структуры, резко увеличивается ее проницаемость, в конечном счете нарушаются ее функции.

ПОЛИЕНОВЫЕ АНТИБИОТИКИ – (нистатин, амфотерицин В) накапливаются также в липидах ЦПМ, но в тех случаях, где есть стерины – у грибков. Поэтому обладают противогрибковым действием.

3 и 4 группы антибиотиков – ИНГИБИТОРЫ СИНТЕЗА НУКЛЕИНОВЫХ КИСЛОТ И БЕЛКА.

Они выключают определенные звенья цепочки:

ДНК---иРНК---белок

!

ДНК

ФТОРХИНОЛОНЫ – ингибируют синтез ДНК-гиразы (фермент), в результате чего нарушается синтез ДНК, и вторично – синтез белка.

РИФАМПИЦИН – ингибируют РНК-полимеразу, в результате чего нарушаются процессы транскрипции.

МАКРОЛИДЫ и ЛИНКОМИЦИН – ингибируют фермент транслоказу, нарушается перемещение рибосомы вдоль нити РНК.

ТЕТРАЦИКЛИНЫ и ГРИЗЕОФУЛЬВИН – нарушается прикрепление т-РНК к и-РНК, и синтезируется дефектный белок, либо его синтез вообще прекращается.

АМИНОГЛИКОЗИДЫ – нарушают процесс считывания информации антикодоном т-РНК с кодоном на и-РНК.

КЛАССИФИКАЦИЯ антибиотиков по спектру действия.

  1. Антибиотики широкого спектра действия:

  1. тетрациклины

  2. левомицетины

Они действуют на 4 вида микроорганизмов:

  • грам+ : кокки, дифтерия, газовой гангрены, столбняка.

  • грам- : кокки, кишечные, синегнойная палочка

  • риккетсии : сыпной тиф и др.

  • некоторые крупные вирусы : трахома и др.

Сейчас они имеют небольшое значение.

  1. ампициллины и амоксициллин (полусинтетические пенициллины)

  2. аминогликозиды 3- и 4-го поколений (гентамицин и нетромицин)

  3. цефалоспорины 2- и 3-го поколений (кетоцеф и клафоран)

  4. карбапенемы (тиенам).

Эти антибиотики сейчас широко применяются.

  1. Антибиотики узкого спектра действия:

  1. действующие преимущественно на грам+ флору

  1. действующие преимущественно на грам- флору

  1. Противогрибковые антибиотики – применяются для лечения микозов:

  1. полиены (нистатин, леворин, амфотерицин Б) – для лечения кандидамикозов, глубоких микозов, дерматомикозов.

  2. Гризеофульвин (накапливается в клетках, формирующих кератин, ингибирует синтез нуклеиновых кислот) – для лечения : - микроспории (стригущий лишай)

КЛАССИФИКАЦИЯ антибиотиков по клиническому применению:

АНТИБИОТИКИ 1-ГО РЯДА (основные) – применяются для лечения инфекций легкой и средней тяжести.

  1. пенициллины (природные и полусинтетические)

  2. тетрациклины (природные и полусинтетические)

  3. макролиды

  4. цефалоспорины 1-го поколения (цефалексин, цефазолин)

  5. аминогликозиды 2-го поколения (гентамицин)

АНТИБИОТИКИ 2-ГО РЯДА (резервные) – применяются для лечения тяжелых инфекций, и инфекций, вызванных резистентной флорой.

  1. аминогликозиды 3-го поколения (нетромицин)

  2. цефалоспорины 2- и 3-го поколений (кетоцеф и клафоран )

  3. карбапенемы (тиенам).

ПЕНИЦИЛЛИНЫ - это антибиотики, полученные на основе продуктов жизнедеятельности плесневых грибков рода Penicillum.

Различают по способу получения – природные и полусинтетические.

Природные пенициллины (бензилпенициллин, натриевая и калиевая соль его) получают биосинтетическим путем.

Спектр действия – влияют на грам+ флору, но сейчас большинство штаммов малочувствительно к ним. Важно значение высокой чувствительности бледной спирохеты к пенициллинам.

Бензилпенициллин – основной путь введения внутримышечный, быстро разрушается в ЖКТ, плохо всасывается в кишечнике. Подкожные инъекции очень болезненны (особенно калиевая соль).

Действует через 15-30 минут, длительность не более 4 часов, поэтому для поддержания терапевтической концентраци необходимл вводить каждые 4-6 часов.

Тер.концентрация

6-8 раз в день – при тяжелом течении,

3-4 раза в день – при средней и легкой

степени тяжести

часы

0 4 8 12 16 20 24

Можно вводить и внутривенно, но тут пенициллины очень быстро секретируется в почках и выводится с мочой. В/в капельно применяют при лечении сифилиса.

Дозировка – до 20 млн ЕД в сутки, то есть токсического эффекта нет. Можно назначать беременным в 1 триместре, (во 2 триместре предпочтительны цефалоспорины).

Пролонгированные формы пенициллина - это плохо растворимые соли бензилпенициллина, вводят внутримышечно, где создается депо, из которого медленно рассасывается действующее вещество.

Новокаиновая соль бензилпенициллина – до 12 часов

Бициллин-1 – до 7 дней

Бициллин-3 – до 7 дней.

Недостатки :

  • не удается создать в крови высокую бактерицидную концентрацию, уступая по эффективности бензилпенициллину. Поэтому эти формы применяются для лечения заболеваний легкой и средней тяжести, и для профилактики ревматизма.

Полусинтетические пенициллины – получают при энзиматическом расщеплении бензилпенициллина на бензиловый радикал и 6-АПК (6-аминопенициллановая кислота). К 6-АПК добавляют различные другие радикалы, получая новые препараты:

  1. оксациллин

  2. ампициллин

  3. метициллин

  4. амоксициллин.

Отличия природных от полусинтетических:

  • действуют на резистентные к бензилпенициллину штаммы микроорганизмов (исключение – ампициллин)

  • ряд антибиотиков обладают широким спектром действия, то есть действуют и на грам- флору (ампициллин, амоксициллин – к нему также чувствительна Helicobacter pylori)

  • назначается не только внутримышечно, но и в таблетках, в крови создается бактерицидная концентрация. Таблетки по 0,25 и 0,5 по 4-6 раз в день.

Применение пенициллинов – инфекции легкой и средней степени тяжести, вызванной чувствительной к нему флорой.

studfiles.net


Смотрите также




г.Самара, ул. Димитрова 131
[email protected]